首页> 外文会议>FLEX workshop >1st Workshop on Remote Sensing of Solar Induced Vegetation FluorescenceESTEC, 19-20 June, 2002
【24h】

1st Workshop on Remote Sensing of Solar Induced Vegetation FluorescenceESTEC, 19-20 June, 2002

机译:第一届太阳能遥感植被荧光遥感研讨会ESTEC,2002年6月19日至20日

获取原文
获取原文并翻译 | 示例

摘要

Starting from the early paper by Heber (1969), several studies have demonstrated arnsubtle shift in leaf spectroscopic characteristics (both absorbance and reflectance) inrnresponse to rapid changes in environmental conditions. More recent work, brieflyrnreviewed here, has also demonstrated the existence of two components in the markedrnpeak centered at 505-540 nm: an irreversible component, attributed to therninterconversion of leaf xanthophylls, and a reversible component at slightly longerrnwavelengths, resulting from conformational changes induced by the buildup of a pHrngradient across the thylakoid membrane associated with photosynthetic electronrntransport.rnBoth processes (xanthophyll de-epoxidation and conformational changes) are knownrnto contribute to the dissipation of excess energy in Photosystem II (PSII). Leafrnspectroscopy could therefore provide a powerful non-invasive tool for therndetermination of leaf photosynthetic processes.rnThis led to the development of the normalized spectral index PRI (PhotochemicalrnReflectance Index; Gamon, Penuelas & Field 1992; Gamon, Serrano & Surfus 1997),rnwhich relates the functional signal at 531 nm to a reference signal at 570 nm. Thernindex has been found to track diurnal changes in xanthophyll de-epoxidation state,rnradiation use efficiency and fluorescence in response to light, both at the leaf andrnmore recently at the canopy level. A common relationship has also been reportedrnacross species and functional types, although such a generality has not always beenrnconfirmed.rnRecent reports (Stylinski et al. 2000) have also hinted of a possible link between PRIrnand leaf photosynthetic potential, possibly through the correlation betweenrnxanthophyll content and electron transport machinery in the chloroplast. Such a link,rnif confirmed, could prove very useful for the remote sensing and modelling ofrnvegetation.rnSome of these open questions were addressed in the present study.rnThe correlation between leaf function and reflectance was studied in seedlings of 10rnbroadleaf tree species (Arbutus unedo, Castanea sativa, Fraxinus angustifolia, Fagusrnsylvatica, Juglans regia, Laurus nobilis, Ligustrum vulgare, Platanus occidentalis,rnQuercus robur, Q. Ilex, Salix capraea) under controlled conditions. To avoid thernpossibility of a spurious correlation in response to light, electron transport rate wasrnmodulated through changes in ambient CO2 concentration, whilst irradiance was keptrnconstant at saturating levels. This would mimic the effects of stomatal changes underrnmidday field conditions. Leaf photosynthetic potential (Jmax, Vcmax) and electronrntransport rates were derived from the resulting A/ci curves through the Farquharrnmodel (Farquhar & von Caemmerer 1982; Farquhar, von Caemmerer & Berry 1980).rnLeaf reflectance in the visible region was continuously monitored with a ZEISS
机译:从Heber(1969)的早期论文开始,几项研究表明,叶片光谱特性(吸光度和反射率)的细微变化对环境条件的快速变化无响应。在此简要回顾的最新工作还表明,在标记峰中以505-540 nm为中心存在两个成分:一个不可逆成分,归因于叶黄素的相互转化,另一个是波长稍长的可逆成分,这是由于跨整个类囊体膜的pH梯度的积累与光合作用的电子传递有关。已知两种过程(叶黄素脱环氧化和构象变化)都有助于光系统II(PSII)中多余能量的消散。因此,叶光谱技术可以为测定叶片的光合作用提供强有力的非侵入性工具。这导致归一化光谱指数PRI(光化学反射系数; Gamon,Penuelas&Field 1992; Gamon,Serrano&Surfus 1997)的发展,这与531 nm的功能信号到570 nm的参考信号。发现该指数跟踪叶和最近在冠层水平上的叶黄素脱环氧化状态,辐照利用效率和荧光响应光的日变化。跨物种和功能类型之间也有共同的联系,尽管这种普遍性并不总是得到证实。最近的报道(Stylinski等人,2000年)也暗示了PRI和叶的光合潜力之间可能存在联系,可能是由于叶黄素含量与叶绿素含量之间的相关性所致。叶绿体中的电子传输机械。如果确定,这样的联系可能对植被的遥感和建模非常有用。rn本研究解决了一些开放性问题。rn在10种阔叶树种的幼苗中研究了叶片功能与反射率之间的相关性。在受控条件下,栗木,白蜡木,水青冈,核桃,月桂,女贞,白橡,白栎,Q。冬青,柳树)。为了避免对光进行虚假相关性的可能性,通过环境CO2浓度的变化来调节电子传输速率,同时将辐照度保持恒定在饱和水平。这将模仿午间田间条件下气孔变化的影响。通过Farquharrn模型(Farquhar&von Caemmerer 1982; Farquhar,von Caemmerer&Berry 1980)从所得的A / ci曲线得出叶片的光合势(Jmax,Vcmax)和电子传递速率。rn连续监测可见区域的叶片反射率。蔡司

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号