【24h】

Scaling Large Learning Problems with Hard Parallel Mixtures

机译:使用硬并行混合物扩展大型学习问题

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

A challenge for statistical learning is to deal with large data sets, e.g. in data mining. Popular learning algorithms such as Support Vector Machines have training time at least quadratic in the number of examples: they are hopeless to solve problems with a million examples. We propose a "hard parallelizable mixture" methodology which yields significantly reduced training time through modularization and paral-lelization: the training data is iteratively partitioned by a "gater" model in such a way that it becomes easy to learn an "expert" model separately in each region of the partition. A probabilistic extension and the use of a set of generative models allows representing the gater so that all pieces of the model are locally trained. For SVMs, time complexity appears empirically to locally grow linearly with the number of examples, while generalization performance can be enhanced. For the probabilistic version of the algorithm, the iterative algorithm provably goes down in a cost function that is an upper bound on the negative log-likelihood.
机译:统计学习的挑战是处理大型数据集,例如在数据挖掘中。诸如支持向量机之类的流行学习算法在示例数量上的训练时间至少是二次的:它们无望解决一百万个示例的问题。我们提出了一种“硬可并行混合”方法,该方法通过模块化和并行化处理显着减少了培训时间:“ gater”模型以迭代方式划分训练数据,从而使单独学习“专家”模型变得容易在分区的每个区域中。概率扩展和一组生成模型的使用允许代表选民,以便模型的所有部分都在本地进行训练。对于SVM,凭经验来看,时间复杂度随示例数量线性增长,同时可以提高泛化性能。对于算法的概率版本,迭代算法可证明在成本函数中下降,该成本函数是负对数可能性的上限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号