【24h】

EXPERIMENTAL STUDY ON THE STABILIZATION OF THE NO-MOTION STATE IN THE RAYLEIGH-BENARD CONVECTION PROBLEM

机译:瑞利-贝纳德对流问题中无运动状态稳定的实验研究

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

We demonstrate experimentally that through the use of proportional-differential control, it is possible to stabilize the no-motion state of a fluid layer heated from below, cooled from above, and confined in an upright, circular cylinder (the Rayleigh-Benard problem). An array of 24 independently controlled heaters (thermal actuators), microfabricated on a silicon wafer, constitutes the bottom boundary of the test cell. A cooling system maintains the top boundary at a constant temperature. Silicon diodes located at the mid-height of the cell, above the actuators, measure the fluid's temperature. The multi-input, multi-output controller adjusts the heaters' power in proportion to the deviation of the fluid's temperatures, as recorded by the diodes, from preset values associated with the no-motion, conductive state. First, a set of experiments was conducted in the absence of a controller to determine the uncontrolled, reference state. Advantage is taken of the linear dependence of the mid-height temperature on the power input in the no-motion state. The preset temperatures are determined by extrapolating the mid-height temperatures to the desired input power values. A proportional controller is then engaged. We show that as the controller's gain increases so does the critical Rayleigh number for the onset of convection. The proportional controller allows us to increase the critical Rayleigh number by as much as a factor of 1.4. When the controller's gain is larger than a critical value, the system becomes time-wise oscillatory (Hopf bifurcation) and the controller's performance deteriorates. The oscillatory convection can be significantly damped out by engaging a proportional-differential (PD) controller. The PD controller allows us to further increase the critical Rayleigh number for the onset of convection to as much as a factor or 1.7 compared to the uncontrolled case. Further increases in the critical Rayleigh number were not possible due to the actuators' saturation. We also compared the supercritical flow patterns at the mid-height of the test cell in the presence of the controller with the flow patterns in the absence of a controller. The proportional controller modified the flow pattern from a single convective cell with ascending fluid in one half of the cell and descending in the other half, to fluid ascending at the center of the cell and descending at near the lateral wall. Our work represents an improvement over previous experimental investigations on the stabilization of Rayleigh-Benard convection in which the critical Rayleigh number was increased by only a factor of 1.2. Almost uniform temperature distribution at the mid-height is obtained through the combined action of proportional and derivative controllers. The Rayleigh-Benard convection is suppressed under conditions when, in the absence of a controller, flow would persist.
机译:我们通过实验证明,通过使用比例微分控制,可以稳定从下方加热,从上方冷却并限制在直立的圆柱体内的流体层的不运动状态(瑞利贝纳德问题) 。由24个独立控制的加热器(热执行器)组成的阵列微制造在硅晶片上,构成了测试单元的底部边界。冷却系统将顶部边界保持在恒定温度。位于执行器上方单元中间高度的硅二极管可测量流体的温度。多输入多输出控制器与流体温度的偏差成比例地调节加热器的功率,如二极管所记录的,该温度与与静止,导电状态相关的预设值有关。首先,在没有控制器的情况下进行了一组实验,以确定不受控制的参考状态。在静止状态下,利用中间高度温度对输入的功率的线性依赖性是有利的。预设温度是通过将中等高度温度外推到所需的输入功率值来确定的。然后使用比例控制器。我们表明,随着控制器增益的增加,对流爆发的临界瑞利数也随之增加。比例控制器使我们能够将临界瑞利数增加1.4倍。当控制器的增益大于临界值时,系统会出现时间振荡(霍夫夫分叉),并且控制器的性能会下降。通过使用比例差(PD)控制器,可以显着抑制振荡对流。与不受控制的情况相比,PD控制器使我们能够将对流发生时的临界瑞利数进一步提高至因子或1.7。由于执行器饱和,不可能进一步增加临界瑞利数。我们还比较了在有控制器的情况下测试单元中部高度的超临界流型与在没有控制器的情况下的流型。比例控制器将流动模式从单个对流单元修改为在单元的一半中上升,而在另一半中下降,再到在单元中心上升并在侧壁附近下降的流体。我们的工作是对以前瑞利-贝纳德对流稳定性实验研究的一项改进,在该实验中,临界瑞利数仅增加了1.2倍。通过比例控制器和微分控制器的组合动作,可以在中部高度获得几乎均匀的温度分布。在没有控制器的情况下,流量将持续存在的条件下,瑞利-贝纳德对流被抑制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号