【24h】

DESIGN OF APPARATUS FOR STUDYING AERODYNAMICS OF VOICE PRODUCTION

机译:用于研究语音产生动力学的装置的设计

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The design and testing of an experimental apparatus for in vitro study of phonatory aerodynamics (voice production) in humans is presented. The presentation includes not only the details of apparatus design, but flow visualization and Digital Particle Image Velocimetry (DPIV) measurements of the developing flow that occurs during the opening of the constriction from complete closure. The main features of the phonation process have long been understood. A proper combination of air flow from the lungs and of vocal fold tension initiates a vibration of the vocal folds, which in turn valves the airflow. The resulting periodic acceleration of the airstream through the glottis excites the acoustic modes of the vocal tract. It is further understood that the pressure gradient driving glottal flow is related to flow separation on the downstream side of the vocal folds. However, the details of this process and how it may contribute to effects such as aperiodicity of the voice and energy losses in voiced sound production are still not fully grasped. The experimental apparatus described in this paper is designed to address these issues. The apparatus itself consists of a scaled-up duct in which water flows through a constriction whose width is modulated by motion of the duct wall in a manner mimicking vocal fold vibration. Scaling the duct up 10 times and using water as the working fluid allows temporally and spatially resolved measurements of the dynamically similar flow velocity field using DPIV at video standard framing rates (15Hz). Dynamic similarity is ensured by matching the Reynolds number (based on glottal flow speed and glottis width) of 8000, and by varying the Strouhal number (based on vocal fold length, glottal flow speed, and a time scale characterizing the motion of the vocal folds) ranging from 0.01 to 0.1. The walls of the 28 cm x 28 cm test section and the vocal fold pieces are made of clear cast acrylic to allow optical access. The vocal fold pieces are 12.7 cm x 14 cm x 28 cm and are rectangular in shape, except for the surfaces which form the glottis, which are 6.35 cm radius half-circles. Dye injection slots are placed on the upstream side of both vocal field pieces to allow flow visualization. Prescribed motion of the vocal folds is provided by two linear stages. Linear bearings ensure smooth execution of the motion prescribed using a computer interface. Measurements described here use the Laser-Induced Fluorescence (LIF) flow visualization and DPIV techniques and are performed for two Strouhal numbers to assess the effect of opening time on the development of the glottal jet. These measurements are conducted on a plane oriented perpendicular to the glottis, at the duct midplane. LIF measurements use a 5W Argon ion laser to produce a light sheet, which illuminates the dye injected through a slot in each vocal fold piece. Two dye colors are used, one for each side. Quantitative information about the velocity and vorticity fields are obtained through DPIV measurements at the same location as the LIF measurements.
机译:介绍了一种用于体外研究人的语音空气动力学(语音产生)的实验设备的设计和测试。该演示不仅包括设备设计的细节,还包括在从完全关闭的狭窄部位打开过程中发生的显影液流动的流动可视化和数字粒子图像测速(DPIV)测量。长期以来,发声过程的主要特征已为人们所了解。来自肺部的气流和声带张力的适当组合会引发声带的振动,进而使气流产生瓣膜。通过声门产生的气流的周期性加速激发了声道的声学模式。还应理解,压力梯度驱动声门流与声带下游侧的流分离有关。但是,该过程的细节以及它如何对诸如声音的非周期性和声音产生中的能量损失之类的影响做出贡献仍未完全掌握。本文介绍的实验设备旨在解决这些问题。该设备本身包括一个放大的导管,水在其中流过收缩部,收缩部的宽度由导管壁的运动以模仿声带振动的方式调节。将管道放大10倍并使用水作为工作流体,可以使用DPIV以视频标准成帧速率(15Hz)对动态相似的流速场进行时间和空间解析测量。通过匹配8000的雷诺数(基于声门流速和声门宽度),并改变斯特劳哈尔数(基于声带长度,声门流速和表征声带运动的时间刻度),可以确保动态相似性。 )的范围从0.01到0.1。 28厘米x 28厘米测试部分的壁和人声折片均由透明的丙烯酸浇铸材料制成,以允许光学进入。人声折叠片为12.7厘米x 14厘米x 28厘米,呈矩形,除了形成声门的表面(半径为6.35厘米的半圆)。染料注入槽位于两个声场块的上游,以实现流量可视化。声带的规定运动由两个线性阶段提供。直线轴承确保使用计算机界面平稳地执行规定的运动。这里描述的测量使用激光诱导荧光(LIF)流动可视化技术和DPIV技术,并通过两个Strouhal数进行评估,以评估开放时间对声门喷射的影响。这些测量是在导管中平面在垂直于声门的平面上进行的。 LIF测量使用5W氩离子激光器产生光片,该光片照亮通过每个人声折叠件中的狭缝注入的染料。使用两种染料颜色,每侧一种。通过DPIV测量可在与LIF测量相同的位置获得有关速度场和涡度场的定量信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号