【24h】

HEMISPHERICAL EMISSIVITY BY INFRARED REFLECTANCE

机译:红外反射的半球形发射率

获取原文

摘要

Emissivity and absorptivity are key parameters inmodels for thermal analysis. Absorptivity depends onthe spectrum of the incoming radiation in the ultra violet(UV) and visible (VIS) range and is thus largelyindependent of temperature. Emissivity characterises theoptical properties of surfaces towards infrared radiation,and is therefore temperature dependent. Very commonlythe emissivity is determined at room temperature, I.e.Between about 3 – 30 μm. With a few exceptions, thetemperature of any exposed surface of spacecrafts willsignificantly differ from that temperature. The spectralproperties of respective materials will therefore have aneffect on the emissivity under real operationalenvironment. For example metals may undergo aminimum in reflectance around 1 μm, having an impacton emissivity at high temperatures. Polymers on theother hand may effect the emissivity at both extremes,high and low, due to specific absorption bands.Typical methods for the determination of temperaturedependence of emissivity are the dynamic thermalmethod or infrared reflectance. Due to the ease ofsample preparation and speed, the infrared methodsrepresent a very versatile approach. The hemisphericalemissivity can be determined collecting total reflectanceinfrared spectra using a Fourier transformed infrared(FTIR) spectrometer coupled with an integrating sphere.Due to the spectral limits of beam splitters anddetectors, several wavelength ranges need to beacquired independently. By that it is possible to coverthe reflectance from the UV/VIS to the far infrared(FIR). Once the spectrum is measured, emissivity can becalculated for any temperature needed as long as mostpart of the blackbody radiation falls into the spectralrange measured. This approach allows multipleapplications, and examples are presented for:? Emissivity on nozzle at high temperatures withworking conditions between 1000 and 1300 K. Asignificant increase in emissivity can be observed athigher temperatures.? Emissivity of black coatings for cryogenicapplications, where for temperatures down to 30 K awavelength range of at least 300 μm need to becovered. The difficulty of using an integrating sphere in the FIR is overcome by a variable angleaccessory, where incident and reflected angles canbe set independently. This is supporting theassessment of specularity/diffusity of the samplespecimen.
机译:发射率和吸收率是热分析模型中的关键参数。吸收率取决于紫外线(UV)和可见光(VIS)范围内入射辐射的光谱,因此在很大程度上与温度无关。发射率表征表面对红外辐射的光学特性,因此取决于温度。通常,发射率是在室温下确定的,即介于3至30μm之间。除少数例外,航天器任何裸露表面的温度将与该温度明显不同。因此,在实际操作环境下,相应材料的光谱特性将对发射率产生影响。例如,金属可能会经历约1μm的最小反射率,从而对高温下的发射率产生影响。另一方面,由于特定的吸收带,聚合物可能同时在极端,高和低两种情况下影响发射率。测定发射率的温度依赖性的典型方法是动态热法或红外反射率。由于样品制备的简便性和速度,红外方法代表了一种非常通用的方法。可以使用结合积分球的傅立叶变换红外(FTIR)光谱仪收集全反射红外光谱来确定半球发射率。由于分束器和检测器的光谱限制,需要独立获取几个波长范围。这样就可以覆盖从UV / VIS到远红外(FIR)的反射率。一旦光谱被测量,只要大部分黑体辐射落入所测量的光谱范围内,就可以计算所需温度的发射率。这种方法允许多个应用程序,并提供以下示例:在工作条件介于1000和1300 K之间的高温下,喷嘴的发射率。在较高的温度下,可以观察到发射率的显着增加。在温度低至30 K的低温应用中,需要发现黑色涂层的发射率,该波长范围至少为300μm。可变角度附件克服了在FIR中使用积分球的困难,该附件可以独立设置入射角和反射角。这支持了样品标本的镜面反射率/扩散率的评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号