首页> 外文会议>European conference on spacecraft structures, materials mechanical testing >ACTIVE VIBRATION SUPPRESSION IN SPACECRAFT STRUCTURES BASED ONLQG-CONTROLLER AND KALMAN-OBSERVER
【24h】

ACTIVE VIBRATION SUPPRESSION IN SPACECRAFT STRUCTURES BASED ONLQG-CONTROLLER AND KALMAN-OBSERVER

机译:基于LQG-Controller和Kalman-observer的空间结构主动振动抑制

获取原文

摘要

Within the scope of the frame contract betweenDeutsches Zentrum für Luft- und Raumfahrt e.V.(DLR) and IABG mbH, an applicable controlmethodology for active vibration suppression on aflexible spacecraft structure was designed,implemented, and experimentally verified. The mainobjective of active vibration suppression is to reducethe structural vibrations due to unknown, externalperturbations. A practical application is thestabilization of on-board science payload of earthobservation satellites. According to this application,four piezo-electric actuators were attached to aflexible structure at dedicated positions to introducethe artificial attenuation. The objective was not todesign a new control strategy but to provide apracticable design guide for existing controlmethods which may efficiently be realized in astraight forward manner. In order to find the mostsuitable control strategy to be used in representative,low damped structure applications, several controlalgorithms, in particular. Modal FilteringTechniques (Spatio-Temporal-Filtering) and theLQG (Linear-Quadratic-Gaussian) were investigatedwith respect to performance and robustness. Thecontrol design methodology was based on a highfidelity mathematical model of an existingspacecraft experimental structure, obtained by finiteelement modelling and applying model orderreduction methods in the modal space. This modelwas supplemented by appropriate actuator andsensor models, and validated experimentallyutilizing modal analysis techniques. Prior to theimplementation and experimental validation,numerical simulations of open and closed loopbehaviour using MATLAB/Simulink? wereperformed. The model-based LQG control approachin conjunction with a Kalman filter turned out to bemost suitable with respect to controller-performance, applicability, and stability. In severaliterative steps, the controller design was adapted tothe dynamic properties of the spacecraft trussstructure CEM-3 2, 3, which was provided by NASALangley Research Center. Finally, the applicabilityof the control system was verified in a real worldexperiment on the CEM-3 test bed by using piezo- electric actuators and a configurable dSPACE?controller hardware. As a major result of thisexperimental verification step, attenuations of up to -30dB for the main target modes in the frequencyrange of 20 - 70 Hz were achieved. This paper givesa brief overview on the methodology which wasused to develop and to implement a controller for anactive structural damping. Further on, the difficultiesoccurred during control loop synthesis and theresults achieved are addressed.
机译:在Deutsche ZentrumfürLuft-und Raumfahrt e.V.(DLR)和IABG mbH之间的框架合同范围内,设计,实施并通过实验验证了适用于柔性航天器结构主动振动抑制的控制方法。主动振动抑制的主要目的是减少由于未知的外部扰动引起的结构振动。实际应用是稳定地球观测卫星的机载科学有效载荷。根据该申请,在专用位置将四个压电致动器附接到柔性结构以引入人工衰减。目的不是设计一种新的控制策略,而是为现有的控制方法提供可行的设计指南,该方法可以以直截了当的方式有效地实现。为了找到最有代表性的低阻尼结构应用中要使用的控制策略,特别是几种控制算法。研究了模态滤波技术(时空滤波)和LQG(线性二次高斯)。控制设计方法是基于现有航天器实验结构的高保真数学模型,该模型是通过有限元建模并在模态空间中应用模型降阶方法获得的。通过适当的执行器和传感器模型对该模型进行了补充,并通过模态分析技术进行了实验验证。在实施和实验验证之前,使用MATLAB / Simulink?进行开环和闭环行为的数值模拟。进行。在控制器性能,适用性和稳定性方面,基于模型的LQG控制方法与卡尔曼滤波器相结合是最合适的。在几个迭代的步骤中,控制器设计适应了NASALangley研究中心提供的航天器桁架结构CEM-3 2、3的动态特性。最后,通过使用压电致动器和可配置的dSPACE?控制器硬件,在CEM-3测试台上的实际实验中验证了该控制系统的适用性。该实验验证步骤的主要结果是,在20-70 Hz频率范围内,主要目标模式的衰减达到-30dB。本文简要概述了用于开发和实现主动结构阻尼控制器的方法。进一步地,解决了在控制回路合成期间发生的困难以及所获得的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号