【24h】

CFRP ELECTRONICS HOUSING FOR A SATELLITE

机译:卫星的CFRP电子外壳

获取原文

摘要

The drive for continuous mass reductions in spacecraftstructures has promoted the use of carbon fibrereinforced plastics. CFRP has excellent specificstiffness and strength, which makes it possible toconstruct lightweight structures. CFRP is typically usedin applications where electrical, thermal and radiationprotection properties are not decisive.Spacecraft has several housings for electronics andequipment. These are typically made of aluminium.Electronics housing multifunctional performancerequirements can also be met using composite materials.In the course of an ESA/ESTEC technology study'Advanced Equipment Design (AED)' a novel conceptfor a CFRP electronics housing was developed. Thermalconductivity of the structure was managed with highconductivity pitch based carbon fibres. The selectedK1100 fibre provides as a ply about four times higherthermal conductivity in the direction of fibres thantypical aluminium alloys. PAN based carbon fibre M40Jwas used as structural fibre.Electrical properties and particle radiation protectionwere managed with a metal foil inside the CFRPlaminate. The primary material selection for the foil waswolfram due to its high radiation attenuation capability,mechanical characteristics, and its good thermalconductivity.A breadboard model was designed and constructed forthe ADPMS unit of PROBA 2 satellite. Design driverswere a considerable mass saving compared toequivalent aluminium housing, parts integration,minimising the number of aluminium parts andmanufacturability of the parts. All essentialrequirements set for the aluminium housing wereapplied to the CFRP housing with no majormodifications.In the breadboard model the wolfram foil was replacedwith a steel foil. However, sample tests were conductedto applicable wolfram embedded laminate structures to evaluate the radiation attenuation properties. The resultsindicated viability of the concept.The external dimensions as well as the location of PCBsand connectors were determined by the requirements setfor the aluminium housing. This restricted the freedomof design and resulted in some non-preferred designdetails. Limited space and strict tolerances gavechallenge to the design, manufacture and assembly.The finite element structural and thermal analyses wereperformed. Also, some radiation attenuationcalculations and simulations were performed. Thecorrelation between the modelled and measuredperformance was analysed.The breadboard model was subjected to EMI/EMC,thermal and mechanical qualification tests. The testperformance was promising but indicated need forcertain design changes. The major problem was relatedto the original materials selection where K1100 fibrewith polycyanate ester resin was selected. This turnedout to be a poor selection due to very low adhesionstrength of the K1100 fibre to the matrix material. Thiscaused a strong tendency to a delamination type failurein the laminate.It can be concluded that there is a considerable potentialof mass saving over the aluminium housing whenutilizing multiple properties of composite materials.However, the cost of the CFRP housing should bedecreased, especially material and manufacturing costs.
机译:不断减少航天器结构质量的动力促进了碳纤维增强塑料的使用。 CFRP具有出色的比刚度和强度,这使得构造轻质结构成为可能。 CFRP通常用于对电气,热和辐射防护性能没有决定性作用的应用中。航天器有多个用于电子设备的外壳。这些通常由铝制成。电子外壳对多功能性能的要求也可以使用复合材料来满足。在ESA / ESTEC技术研究“高级设备设计(AED)”的过程中,开发了CFRP电子外壳的新颖概念。结构的热导率由高导电性沥青基碳纤维控制。所选的K1100纤维在纤维方向的热导率是典型铝合金的四倍。将PAN基碳纤维M40J用作结构纤维。通过在CFRP层压板内部使用金属箔来管理电性能和颗粒辐射防护。铝箔的主要材料是狼膜,因为它具有较高的辐射衰减能力,机械特性和良好的导热性。为PROBA 2卫星的ADPMS单元设计并构建了一个面包板模型。与同等的铝制外壳,零件集成相比,设计驱动程序可节省大量的重量,从而最大限度地减少了铝制零件的数量和零件的可制造性。铝制外壳的所有基本要求均应用到CFRP外壳上,无重大修改。在面包板模型中,钨箔被钢箔代替。但是,对适用的Wolfram嵌入式层压板结构进行了样品测试,以评估辐射衰减特性。结果表明了该概念的可行性。外部尺寸以及PCB和连接器的位置由铝制外壳的要求决定。这限制了设计的自由度,并导致了一些非优选的设计细节。有限的空间和严格的公差对设计,制造和组装提出了挑战。进行了有限元结构和热分析。此外,进行了一些辐射衰减计算和模拟。分析了模型性能与测量性能之间的相关性。对面包板模型进行了EMI / EMC,热和机械鉴定测试。测试性能令人鼓舞,但表明需要进行某些设计更改。主要问题与原始材料的选择有关,在原始材料中选择了含多氰酸酯树脂的K1100纤维。由于K1100纤维与基质材料的粘合强度非常低,因此选择结果很差。因此,可以得出结论:当利用复合材料的多种性能时,铝制外壳的质量节省潜力很大。然而,应降低CFRP外壳的成本,尤其是材料和制造成本费用。

著录项

  • 来源
  • 会议地点 Noordwijk(NL)
  • 作者单位

    Helsinki University of Technology Laboratory of Lightweight Structures P.O. Box 4300 FIN-02015 TKK Finland Timo.Brander@tkk.fi;

    Verhaert Engineering Division Hogenakkerhoekstraat 21 B-9150 Kruibeke Belgium Kristof.Gantois@verhaert.com;

    Componeering Inc. It?merenkatu 8 FIN-00180 Helsinki Finland Harri.Katajisto@componeering.com;

    Helsinki University of Technology Laboratory of Lightweight Structures P.O. Box 4300 FIN-02015 TKK Finland Markus.Wallin@tkk.fi;

  • 会议组织
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

  • 入库时间 2022-08-26 14:39:28

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号