首页> 外文会议>Enzyme engineering XXIV >EXPERIMENT-BASED COMPUTATIONAL METHOD FOR PROPER ANNOTATION OF THE MOLECULAR FUNCTION OF ENZYMES
【24h】

EXPERIMENT-BASED COMPUTATIONAL METHOD FOR PROPER ANNOTATION OF THE MOLECULAR FUNCTION OF ENZYMES

机译:基于实验的酶分子功能正态计算方法

获取原文
获取原文并翻译 | 示例

摘要

The rate of protein functional elucidation lags far behind the rate of gene and protein sequence discovery, leading to an accumulation of proteins with no known function. Millions of protein database entries are not assigned reliable functions, preventing the full understanding of chemical diversity in living organisms. Pfam contains over 16,712 families, among which more than 3,919 families are of unknown function (DUF families). An additional difficulty, often underestimated, is that only a tiny fraction of enzymes have experimentally established functions and in most cases, function is extrapolated from a small number of characterized proteins to all members of a family leading to over-annotation. Here, two examples of an integrated strategy for the discovery of various enzymatic activities catalyzed within protein families will be presented. This approach relies with a high-throughput enzymatic screening on representatives, structural and modeling investigations, analysis of genomic and metabolic context. The structural analysis is in both cases based on the Active Site Clustering Method developed at Genoscope. We investigated the protein family with no known function, DUF849 Pfam family, and unearthed 14 potential new enzymatic activities, leading to the designation of these proteins as ()-keto acid cleavage enzymes. In addition, we propose an in vivo role for four enzymatic activities and suggest key residues for guiding further functional annotation. The second study will illustrate that proteins with high sequence similarity might not have the same function. We determined the enzymatic activities of 100 O-acyl-L-homoserine transferases representative of the biodiversity of the two unrelated families, MetX and MetA, involved in the first step of the methionine biosynthesis and assumed to always use acetyl-CoA and succinyl-CoA, respectively. We interpreted the results by structural classification of active sites based on protein structure modeling. We identified the specific determining positions responsible for acyl-CoA specificity in the active sites of MetX and MetA enzymes, actually iso-functional for both activities. We then predict that >60% of the 10,000 sequences from these families currently in databases are incorrectly annotated. Finally, we uncovered a divergent subgroup of MetX enzymes in fungi that participate only in L-cysteine biosynthesis as O-succinyl-L-serine transferases. Our results show that the functional diversity within a family may be largely underestimated. The extension of this strategy to other families will improve our knowledge of the enzymatic landscape and the chemical capabilities of biodiversity.
机译:蛋白质功能阐明的速度远远落后于基因和蛋白质序列的发现速度,导致未知功能蛋白质的积累。数百万的蛋白质数据库条目未分配可靠的功能,从而无法充分理解生物体中的化学多样性。 Pfam包含超过16,712个家庭,其中3,919个功能未知的家庭(DUF家庭)。通常被低估的另一个困难是,只有一小部分酶具有实验确定的功能,并且在大多数情况下,功能是从少量特征蛋白推断到家族的所有成员的,从而导致过度注释。在这里,将介绍两个发现蛋白质家族内各种酶促活性的综合策略的例子。这种方法依赖于对代表的高通量酶促筛选,结构和模型研究,基因组和代谢环境分析。在两种情况下,结构分析都是基于Genoscope开发的“活动站点聚类方法”。我们调查了功能不明的蛋白质家族DUF849 Pfam家族,发现了14种潜在的新酶活性,从而将这些蛋白质指定为()-酮酸裂解酶。此外,我们提出了四种酶活性的体内作用,并提出了指导进一步功能注释的关键残基。第二项研究将说明具有高序列相似性的蛋白质可能不具有相同的功能。我们确定了代表蛋氨酸生物合成第一步的两个无关家族MetX和MetA的生物多样性的100 O-酰基-L-高丝氨酸转移酶的酶促活性,并假设始终使用乙酰辅酶A和琥珀酰辅酶A , 分别。我们通过基于蛋白质结构建模的活性位点的结构分类来解释结果。我们在MetX和MetA酶的活性位点中确定了负责酰基辅酶A特异性的特定确定位置,而这两种活性实际上是同功能的。然后,我们预测数据库中当前来自这些家族的10,000个序列中的> 60%被错误地注释。最后,我们在真菌中发现了一个不同的MetX酶亚组,它们仅以L-半胱氨酸-L-丝氨酸转移酶的形式参与L-半胱氨酸的生物合成。我们的结果表明,家庭内部的功能多样性可能被大大低估了。将此策略扩展到其他家庭将改善我们对酶促景观和生物多样性化学能力的了解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号