首页> 外文会议>Enzyme engineering XXIV >EVOLUTION OF PROTEIN DYNAMICS OVER 3.5 BILLION YEARS AT THE HEART OF ENZYME CATALYSIS AND REGULATION
【24h】

EVOLUTION OF PROTEIN DYNAMICS OVER 3.5 BILLION YEARS AT THE HEART OF ENZYME CATALYSIS AND REGULATION

机译:超过35亿年蛋白质酶动力学在酶催化和调控中的作用

获取原文
获取原文并翻译 | 示例

摘要

As a direct manifestation of molecular kinetic energy, temperature is a fundamental evolutionary driver for chemical reactions. However, it is currently not understood how the natural evolution of catalytic efficiency responds to dramatic changes in environmental temperatures. Using Ancestral Sequence Reconstruction (ASR) we resurrect and biophysically characterize the oldest common ancestral kinase and enzymes along the evolutionary path to modern kinases. Strikingly, enzymes coped with an inherent drop in catalytic speed caused as the earth cooled down over 3.5 billion years by accelerating protein dynamics and adapting thermostability by unexpected mechanisms, as characterized by NMR. Tracing the evolution of enzyme activity and stability from the hot-start towards modern hyperthermophilic, mesophilic and psychrophilic organisms illustrates active pressure versus passive drift in evolution on a molecular level . In the second part of my talk I will describe our experimental exploration of the evolution of two allosteric regulation mechanisms widely found in the modern protein kinase superfamily, phosphorylation of the activation loop and binding of a regulatory partner protein. The results reveal the origins of allosteric activation including surprising mechanistic features. Moreover, ASR enabled identification of the underlying allosteric network in modern kinases that spans from the N-terminal to the C-terminal lobes. We are currently exploiting this knowledge for the development of allosteric inhibitors and activators. This latter approach delivered novel kinase inhibitors and activators with extreme specificity and high affinity thereby opening the road to new cancer treatment.
机译:作为分子动能的直接体现,温度是化学反应的基本进化驱动力。然而,目前尚不了解催化效率的自然演变如何响应环境温度的急剧变化。使用祖先序列重建(ASR),我们可以复活并在生物学上表征最古老的常见祖先激酶和沿现代激酶进化途径的酶。令人惊讶的是,由于NMR通过加速蛋白质动力学和通过意想不到的机制适应热稳定性,地球在超过35亿年的时间里冷却下来,因此酶应对了固有的催化速度下降。追溯酶活性和稳定性从热启动到现代的超嗜热,中温和嗜热生物的进化,可以说明分子水平进化中的主动压力与被动漂移。在我的演讲的第二部分中,我将描述我们对在现代蛋白激酶超家族中广泛发现的两种变构调节机制,激活环的磷酸化以及调节伴侣蛋白结合的演变的实验探索。结果揭示了变构活化的起源,包括令人惊讶的机械特征。此外,ASR能够鉴定从N端到C端叶的现代激酶中潜在的变构网络。我们目前正在利用这种知识来开发变构抑制剂和活化剂。后一种方法提供了具有极高特异性和高亲和力的新型激酶抑制剂和活化剂,从而开辟了新的癌症治疗之路。

著录项

  • 来源
    《Enzyme engineering XXIV》|2017年|18-18|共1页
  • 会议地点 Toulouse(FR)
  • 作者

    Dorothee Kern;

  • 作者单位

    HHMI/ Brandeis University, Dept. of Biochemistry, Waltham, USA;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号