首页> 外文会议>Battery engineering symposium 2018 >Nano-Active Electrode Materials
【24h】

Nano-Active Electrode Materials

机译:纳米活性电极材料

获取原文
获取原文并翻译 | 示例

摘要

Nano-active materials are produced by a novel flash calcination process from precursor materials that become mesoporous, with a porosity approaching 50%, with strong necking between grains, so that the materials are intrinsically strong. The flash calcination process has been proven at an industrial scale of 30,000 tpa for oxide materials such as nano-active MgO to produce materials with a surface area in excess of 250 m2/g. This work described the first application of the process to produce electrode materials for batteries. Agricultural grade Manganese Carbonate, without any pre-processing, with a particle size around 15 microns, was flash calcined in a pilot plant reactor in air or steam with a 3 seconds residence time in the heating zone, to give a mesoporous Mn3O4, comprised of grains of about 10-20 nm in size in which the particle size was similar to that of the input material. The Youngs Modulus of the powder particles were measured by nano-indentation, and the modulus was less than 8% of the Mn3O4 crystal value, and characteristic of a fused aggregate of nano-grains. The Mn3O4 power was then heated under argon with Li2O powder to produce either mesoporous LiMn2O4 or Li2MnO3 powder, depending on the molar ratio of Li/Mn. The intercalation process to produce these cathode materials maintained the mesoporous materials structure. Coin cell batteries were fabricated from these materials, and tested over multiple charge discharge cycles. The charge capacity was similar to that of conventional materials, indicating that the small grains enabled an efficient thermal intercalation process, and the cycles showed only a small degradation of performance for the LiMn2O4 or Li2MnO3 materials. With suitable modifications of the production process, it is anticipated that fast charge/discharge batteries suitable for electric vehicle applications can be produced. The stabilisation of the material with nickel and/or cobalt will enhance the electrical conductivity, and enable a comparison of performance with standard lithium ion batteries. The flash calcination process by-passes expensive nano-technology routes to production of nano- electrode materials that generally fail because the binding between aggregates of nano- particles is too weak to resist material restructuring over many cycles. The fusion of the nano-grains during the flash calcination process is the important feature of the flash calcination process. The flash calcination process is a very simple process for production of strong materials that have a mesoporous structure for fast ion and electron transport, and small grains that enable fast, non-destructive intercalation during many cycles using powder materials that can be dropped into existing battery production processes.
机译:纳米活性材料是通过新颖的快速煅烧工艺,由前驱体材料制成的,这些前体材料是介孔的,孔隙率接近50%,并且晶粒之间有强烈的颈缩,因此该材料本质上很坚固。对于氧化物材料(例如纳米活性MgO),闪蒸煅烧工艺已在30,000 tpa的工业规模上得到证明,可生产表面积超过250 m2 / g的材料。这项工作描述了生产电池电极材料的方法的首次应用。未经预处理的农业级碳酸锰盐在15微米左右的中试设备反应器中在空气或蒸汽中快速煅烧,在加热区的停留时间为3秒,从而得到由以下组成的介孔Mn3O4:粒径约为10-20 nm的颗粒,其粒径与输入材料的粒径相似。通过纳米压痕测量粉末颗粒的杨氏模量,其模量小于Mn 3 O 4晶体值的8%,并且具有纳米颗粒的熔融聚集体的特性。然后将Mn3O4粉末在氩气中与Li2O粉末一起加热,以产生中孔LiMn2O4或Li2MnO3粉末,具体取决于Li / Mn的摩尔比。生产这些阴极材料的插入过程保持了中孔材料的结构。纽扣电池由这些材料制成,并经过多个电荷放电循环测试。充电容量与常规材料的充电容量相似,表明小晶粒能够实现有效的热插层过程,并且循环显示LiMn2O4或Li2MnO3材料的性能仅出现很小的下降。通过对生产过程进行适当的修改,可以预期可以生产出适合电动汽车应用的快速充电/放电电池。用镍和/或钴稳定材料将增强导电性,并使性能与标准锂离子电池相比。快速煅烧工艺绕过了昂贵的纳米技术生产纳米电极材料的路线,该工艺通常会失败,因为纳米颗粒的聚集体之间的结合力太弱,无法抵抗许多周期内的材料重组。在快速煅烧过程中纳米颗粒的融合是快速煅烧过程的重要特征。快速煅烧过程是生产具有介孔结构以快速进行离子和电子传输的强力材料和小颗粒的非常简单的过程,该小颗粒可以使用可放入现有电池中的粉末材料在许多循环中进行快速,无损插入生产过程。

著录项

  • 来源
  • 会议地点 Mainz(DE)
  • 作者单位

    Calix Ltd., 9 Bridge Steet, Pymble, NSW 2073 Australia;

    Calix Ltd., 9 Bridge Steet, Pymble, NSW 2073 Australia;

    Calix Ltd., 9 Bridge Steet, Pymble, NSW 2073 Australia;

    Calix Ltd., 9 Bridge Steet, Pymble, NSW 2073 Australia;

    Imperial College London, Department of Chemical Engineering, South Kensington, SW7 2AZ UK;

    Imperial College London, Department of Chemical Engineering, South Kensington, SW7 2AZ UK;

    Imperial College London, Department of Chemical Engineering, South Kensington, SW7 2AZ UK;

    Imperial College London, Department of Chemical Engineering, South Kensington, SW7 2AZ UK;

    Monash University, Department of Chemistry, Wellington Road, Clayton, VIC 3800 Australia;

    Deakin University, Institute for Frontier Materials, 221 Burwood Highway, Burwood, VIC 3125 Australia;

    Deakin University, Institute for Frontier Materials, 221 Burwood Highway, Burwood, VIC 3125 Australia;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号