首页> 外文会议>Energy harvesting and storage: materials, devices, and applications II >Green energy storage materials: advanced nanostructured materials for lithium-ion batteries
【24h】

Green energy storage materials: advanced nanostructured materials for lithium-ion batteries

机译:绿色能源存储材料:用于锂离子电池的先进纳米结构材料

获取原文
获取原文并翻译 | 示例

摘要

The projected doubling of world energy consumption in the next fifty years requires certain measures to meet this demand. The ideal energy provider is reliable, efficient, with low emissions source - wind, solar, etc. The low carbon footprint of renewables is an added benefit, which makes them especially attractive during this era of environmental consciousness. Unfortunately, the intermittent nature of energy from these renewables is not suitable for the commercial and residential grid application, unless the power delivery is 24/7, with minimum fluctuation. This requires intervention of efficient electrical energy storage technology to make power generation from renewable practical. The progress to higher energy and power density especially for battery technology will push material to the edge of stability and yet these materials must be rendered safe, stable and with reliable operation throughout their long life. A major challenge for chemical energy storage is developing the ability to store more energy while maintaining stable electrode-electrolyte interface. A structural transformation occurs during charge-discharge cycle, accompanied by a volume change, degrading the microstructure over-time. The need to mitigate this volume and structural change accompanying charge-discharge cycle necessitates going to nanostructured and multifunctional materials that have the potential of dramatically enhancing the energy density and power density.
机译:预计未来五十年世界能源消耗将增加一倍,需要采取某些措施来满足这一需求。理想的能源供应商是可靠,高效的,并且具有低排放源(风能,太阳能等)。可再生能源的低碳足迹是一项额外的好处,这使它们在这个环保意识时代尤其具有吸引力。不幸的是,这些可再生能源的间歇性特性不适合商业和住宅电网应用,除非功率输出为24/7,并且波动最小。这需要干预有效的电能存储技术,以使可再生能源发电成为现实。更高的能量和功率密度的进步,尤其是电池技术的进步,将使材料达到稳定性的边缘,但是必须使这些材料在其长寿命内保持安全,稳定和可靠的运行。化学能量存储的主要挑战是发展存储更多能量同时保持稳定的电极-电解质界面的能力。在充放电循环中发生结构转变,伴随着体积变化,随着时间的流逝使微观结构退化。为了减轻伴随充电-放电循环的体积和结构变化,需要使用具有显着提高能量密度和功率密度潜力的纳米结构和多功能材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号