首页> 外文会议>Enabling Photonics Technologies for Defense, Security, and Aerospace Applications II >Optical Time-Frequency Scaling for Signal Processing Applications
【24h】

Optical Time-Frequency Scaling for Signal Processing Applications

机译:用于信号处理应用的光时频定标

获取原文
获取原文并翻译 | 示例

摘要

Optical time-frequency processing requires a combination of high-speed, quadratic phase modulators and dispersive delay lines. The latter is typically achieved using optical fibers, but can be compactly implemented and tunable using dispersive filters. Time scaling, either dilation or compression, can be achieved with these building blocks. While basic time scaling followed by direct detection has been demonstrated, we focus on cascading time-scale operations for potential signal processing applications and implementations using integrated-optic platforms. For cascaded operations, both the phase and amplitude of the scaled output must be correct. Time scaling is studied analytically and by simulations. Practical implementation issues are addressed such as the time aperture limits imposed by using sinusoidal phase modulation to approximate the desired quadratic response. The chirp and dispersion relationships are given for "factor of one half and "factor of two" time scaling. The evolution of the signal's time support at intermediate points in the time-scaling operation is shown to be a critical parameter for practical implementations. Two optical time-scaling architectures are studied, and one is clearly better in this respect. Furthermore, a special case arises for a Gaussian input pulse whereby the number of elements needed to realize the time scaling can reduced by a factor of two. Applications for cascaded time scaling operations are discussed, including optical wavelet processing and photonic-assisted analog-to-digital conversion. By using the time-scale operation in the optical domain to mimic the discrete-time downsampling operation, we show that physical scaling of the optical filters between subsequent decomposition levels is not required.
机译:光学时频处理需要结合高速,二次相位调制器和色散延迟线。后者通常使用光纤来实现,但可以使用色散滤镜紧凑地实现和调整。使用这些构建块可以实现时间缩放(扩展或压缩)。虽然已经演示了基本时间定标和直接检测的功能,但我们将重点放在级联时间标度操作上,以实现潜在的信号处理应用和使用集成光学平台的实现。对于级联操作,缩放输出的相位和幅度都必须正确。时间刻度是通过分析和仿真研究的。解决了实际的实现问题,例如通过使用正弦相位调制来逼近所需的二次响应而施加的时间限制。线性调频脉冲和色散关系是针对“一半的因子”和“两个因子”的时间缩放给出的。在时间缩放操作中,信号在中间点的时间支持的演变是实际实现的关键参数。两个对光学时标结构进行了研究,在这方面显然是一种更好的方法,此外,出现了一种高斯输入脉冲的特殊情况,因此实现时标所需的元件数量可以减少两倍。讨论了时间缩放操作,包括光小波处理和光子辅助模数转换,通过在光域中使用时间缩放操作来模拟离散时间下采样操作,我们证明了光学滤波器的物理缩放在随后的分解级别之间不需要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号