首页> 外文会议>Electrostatic Problems During Material Handling >Cytomechanics and cell-level cues in tissue engineering
【24h】

Cytomechanics and cell-level cues in tissue engineering

机译:组织工程学中的细胞力学和细胞水平提示

获取原文
获取原文并翻译 | 示例

摘要

Summary form only given. Many of the most common targets for tissue engineering involve replacement of substantive connective tissue function. To achieve rational strategies for engineering of such mechanically active tissues it is essential to consider the importance and application of mechanical loads as cellular control cues. Inasmuch as our aim is to develop biomimetic systems for tissue growth and repair, it will not be possible to ignore the key mechanical signals, which govern function and form in tissues such as skin, cartilage, tendon, bone, muscle. Indeed, for most adult mammalian, connective tissues, the default repair pathway results in scar tissue and this may be, in large part, a result of inappropriate cell-level mechanical signalling. The key architectural cues in CTs are thought to be mechanical but as long as these regulatory mechanisms remain unclear they cannot be used predictably in tissue engineering. Importantly signals must act at the cell (cytomechanical), rather than the tissue level. We have developed model systems based on 3D cell-seeded collagen gel cultures and uniaxial tensile loading and measuring devices (the culture force monitors - CFMs) to help to identify and quantify key cytomechanic control mechanisms. This approach has emphasised that external loads can only be used to regulate cell function through the mediation of the material properties of their extracellular matrix. At the same time cells change shape and attachment during tissue remodelling and alter the structure of the very matrix, which propagates those mechanical cues. Consequently, cytomechanical control cues must be delivered in a dynamic and vectored manner, taking account of the progressive responses of resident fibroblastic cells. It is concluded that cell responses to external loads can be regulated through: loading patterns, relative to planes of maximum and minimum matrix compliance; cell-matrix interactions (substrate structure, ligand density, integrin modification); cell shape and cytoskeletal structure (regulating cell motility & contraction).
机译:仅提供摘要表格。组织工程学的许多最常见目标涉及实质性结缔组织功能的替代。为了实现对此类机械活性组织进行工程改造的合理策略,必须考虑将机械负荷作为细胞控制线索的重要性和应用。由于我们的目标是开发用于组织生长和修复的仿生系统,因此不可能忽略关键的机械信号,这些信号控制着皮肤,软骨,肌腱,骨骼,肌肉等组织的功能和形式。实际上,对于大多数成年哺乳动物的结缔组织而言,默认的修复途径会导致疤痕组织,这在很大程度上可能是不适当的细胞水平机械信号传递的结果。 CT中的关键体系结构提示被认为是机械的,但只要这些调节机制尚不清楚,就无法在组织工程学中预测使用它们。重要的是,信号必须作用于细胞(细胞力学),而不是组织水平。我们已经开发了基于3D细胞接种胶原蛋白凝胶培养物和单轴拉伸加载和测量装置(培养力监测器-CFM)的模型系统,以帮助识别和量化关键的细胞力学控制机制。这种方法强调了外部负荷只能通过介导其细胞外基质的材料特性来调节细胞功能。同时,细胞在组织重塑过程中会改变形状和附着,并改变基质的结构,从而传播那些机械提示。因此,必须考虑驻留的成纤维细胞的进行性反应,以动态和向量化的方式递送细胞力学控制信号。结论是,可以通过以下方式调节电池对外部负载的响应:相对于最大和最小矩阵顺应性平面的负载模式;细胞-基质相互作用(底物结构,配体密度,整联蛋白修饰);细胞形状和细胞骨架结构(调节细胞运动和收缩)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号