首页> 外文会议>DSC-vol.75-2; American Society of Mechanical Engineers(ASME) International Mechanical Engineering Congress and Exposition; 20061105-10; Chicago,IL(US) >A COMPARISON OF RUNGE KUTTA AND NOVEL L-STABLE METHODS FOR REAL-TIME INTEGRATION METHODS FOR DYNAMIC SUBSTRUCTURING
【24h】

A COMPARISON OF RUNGE KUTTA AND NOVEL L-STABLE METHODS FOR REAL-TIME INTEGRATION METHODS FOR DYNAMIC SUBSTRUCTURING

机译:动态子结构实时积分方法的Runge Kutta方法与新型L稳定方法的比较

获取原文
获取原文并翻译 | 示例

摘要

In this paper we compare the performance of Runge-Kutta and novel L-stable real-time (LSRT) integration algorithms for real-time dynamic substructuring testing. Substructuring is a hybrid numerical-experimental testing method which can be used to test critical components in a system experimentally while the remainder of the system is numerically modelled. The physical substructure and the numerical model must interact in real time in order to replicate the behavior of the whole (or emulated) system. The systems chosen for our study are mass-spring-dampers, which have well known dynamics and therefore we can benchmark the performance of the hybrid testing techniques and in particular the numerical integration part of the algorithm. The coupling between the numerical part and experimental part is provided by an electrically driven actuator and a load cell. The real-time control algorithm provides bi-directional coupling and delay compensation which couples together the two parts of the overall system. In this paper we consider the behavior of novel L-stable real-time (LSRT) integration algorithms, which are based on Rosenbrock's method. The new algorithms have considerable advantages over 4th order Runge-Kutta in that they areunconditionally stable, real-time compatible and less computationally intensive. They also offer the possibility of damping out unwanted high frequencies and integrating stiff problems. The paper presents comparisons between 4th order Runge-Kutta and the LSRT integration algorithms using three experimental configurations which demonstrate these properties.
机译:在本文中,我们比较了Runge-Kutta和新颖的L稳定实时(LSRT)集成算法在实时动态子结构测试中的性能。子结构化是一种混合的数值实验测试方法,可用于通过实验对系统中的关键组件进行测试,而对系统的其余部分进行数值建模。物理子结构和数值模型必须实时交互,以便复制整个(或仿真)系统的行为。我们为研究选择的系统是质量-弹簧-阻尼器,它具有众所周知的动力学,因此,我们可以对混合测试技术的性能进行基准测试,尤其是该算法的数值积分部分。数值部分与实验部分之间的耦合由电动执行器和称重传感器提供。实时控制算法提供双向耦合和延迟补偿,将整个系统的两个部分耦合在一起。在本文中,我们考虑了基于Rosenbrock方法的新型L稳定实时(LSRT)集成算法的行为。与四阶Runge-Kutta相比,新算法具有相当大的优势,因为它们无条件稳定,实时兼容且计算量较小。它们还提供了抑制不必要的高频并集成刚性问题的可能性。本文使用三个实验配置展示了四阶Runge-Kutta与LSRT集成算法之间的比较,这些配置证明了这些特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号