首页> 外文会议>Design-Process-Technology Co-optimization for Manufacturability VIII >Layout optimization of DRAM cells using rigorous simulation model for NTD
【24h】

Layout optimization of DRAM cells using rigorous simulation model for NTD

机译:使用严格的NTD仿真模型优化DRAM单元的布局

获取原文
获取原文并翻译 | 示例

摘要

DRAM chip space is mainly determined by the size of the memory cell array patterns which consist of periodic memory cell features and edges of the periodic array. Resolution Enhancement Techniques (RET) are used to optimize the periodic pattern process performance. Computational Lithography such as source mask optimization (SMO) to find the optimal off axis illumination and optical proximity correction (OPC) combined with model based SRAF placement are applied to print patterns on target. For 20nm Memory Cell optimization we see challenges that demand additional tool competence for layout optimization. The first challenge is a memory core pattern of brick-wall type with a k1 of 0.28, so it allows only two spectral beams to interfere. We will show how to analytically derive the only valid geometrically limited source. Another consequence of two-beam interference limitation is a "super stable" core pattern, with the advantage of high depth of focus (DoF) but also low sensitivity to proximity corrections or changes of contact aspect ratio. This makes an array edge correction very difficult. The edge can be the most critical pattern since it forms the transition from the very stable regime of periodic patterns to non-periodic periphery, so it combines the most critical pitch and highest susceptibility to defocus. Above challenge makes the layout correction to a complex optimization task demanding a layout optimization that finds a solution with optimal process stability taking into account DoF, exposure dose latitude (EL), mask error enhancement factor (MEEF) and mask manufacturability constraints. This can only be achieved by simultaneously considering all criteria while placing and sizing SRAFs and main mask features. The second challenge is the use of a negative tone development (NTD) type resist, which has a strong resist effect and is difficult to characterize experimentally due to negative resist profile taper angles that perturb CD at bottom characterization by scanning electron microscope (SEM) measurements. High resist impact and difficult model data acquisition demand for a simulation model that hat is capable of extrapolating reliably beyond its calibration dataset. We use rigorous simulation models to provide that predictive performance. We have discussed the need of a rigorous mask optimization process for DRAM contact cell layout yielding mask layouts that are optimal in process performance, mask manufacturability and accuracy. In this paper, we have shown the step by step process from analytical illumination source derivation, a NTD and application tailored model calibration to layout optimization such as OPC and SRAF placement. Finally the work has been verified with simulation and experimental results on wafer.
机译:DRAM芯片空间主要由存储单元阵列图案的大小决定,该阵列由周期性存储单元特征和周期性阵列的边缘组成。分辨率增强技术(RET)用于优化周期性图案处理性能。计算光刻技术(例如用于找到最佳离轴照明的源掩模优化(SMO)和光学邻近校正(OPC)与基于模型的SRAF放置相结合)应用于目标上的打印图案。对于20nm存储器单元的优化,我们看到了一些挑战,这些挑战要求布局优化需要更多的工具能力。第一个挑战是k1为0.28的砖墙型存储核心图案,因此它仅允许两个光谱光束发生干涉。我们将展示如何解析得出唯一有效的几何受限源。两束干扰限制的另一个结果是“超稳定”磁芯图案,它具有高聚焦深度(DoF)的优点,但对接近校正或接触纵横比的变化也很不敏感。这使得阵列边缘校正非常困难。边缘可能是最关键的图案,因为它形成了从非常稳定的周期性图案过渡到非周期性外围的过渡,因此它结合了最关键的音高和最高的散焦敏感性。上述挑战使布局校正适用于复杂的优化任务,需要进行布局优化,该布局优化要考虑到DoF,曝光剂量范围(EL),掩模误差增强因子(MEEF)和掩模可制造性约束条件,以找到具有最佳工艺稳定性的解决方案。这只能通过在放置和调整SRAF和主要蒙版特征的尺寸时同时考虑所有条件来实现。第二个挑战是使用负性显影(NTD)型抗蚀剂,该抗蚀剂具有很强的抗蚀作用,并且由于负抗蚀剂轮廓锥角会干扰CD在底部通过扫描电子显微镜(SEM)测量进行表征,因此很难通过实验表征。高抗蚀剂冲击力和难于获取模型数据的需求是需要能够可靠地推断其校准数据集之外的仿真模型。我们使用严格的仿真模型来提供这种预测性能。我们已经讨论了需要针对DRAM接触单元布局进行严格的掩模优化工艺,以产生在工艺性能,掩模可制造性和准确性方面均最佳的掩模布局的方法。在本文中,我们展示了从分析照明源推导,NTD和应用程序定制模型校准到布局优化(如OPC和SRAF放置)的逐步过程。最后,通过晶片上的仿真和实验结果对工作进行了验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号