首页> 外文会议>Deformation mechanisms, microstructure evolution and mechanical properties of nanoscale materials >A Phase-Field - Finite Element Model for Instabilities in Multilayer Thin Films
【24h】

A Phase-Field - Finite Element Model for Instabilities in Multilayer Thin Films

机译:多层薄膜不稳定性的相场有限元模型

获取原文
获取原文并翻译 | 示例

摘要

Cahn-Hilliard type of phase-field (PF) model coupled with elasticity equations is used to study the instabilities in multilayer thin films. The governing equations of the solid state phase transformation include a 4th order partial differential equation representing the evolution of the conserved PF variable (concentration) coupled to 2nd order partial differential equations representing the mechanical equilibrium. A mixed order Galerkin finite element (FE) model is used including C~0 interpolation functions for the displacement, and C~1 interpolation functions for the concentration. It is shown that quadratic convergence, expected for conforming elements, is achieved from this coupled mixed-order FE model. Using the PF -FE model, first, we studied the effect of compositional strain on the PF interface thickness and the results of simulations are compared with the analytical solutions of an infinite thin film diffusion couple with a flat interface. Morphological instabilities in binary multilayer thin films are investigated. The alloys with and without intermediate phase are considered, as well as the cases with stable and meta-stable intermediate phase. Maps of transformations in multilayer systems are carried out considering the effects of initial thickness of layers, compositional strain, and growth of a stable/unstable intermediate phase on the instability of the multilayer thin films. It is shown that at some cases phase transformation, intermediate phase nucleation and growth, or deformation of layers due to high compositional strain can lead to the coarsening of the layers which can result in different mechanical and materials behaviors of the original designed multilayer.
机译:Cahn-Hilliard类型的相场(PF)模型与弹性方程一起用于研究多层薄膜的不稳定性。固态相变的控制方程式包括代表保守的PF变量(浓度)的演化的四阶偏微分方程和代表机械平衡的二阶偏微分方程。使用混合阶Galerkin有限元(FE)模型,包括C〜0插值函数用于位移,C〜1插值函数用于浓度。结果表明,从该耦合的混合阶有限元模型中可以实现对符合元素的二次收敛。首先,我们使用PF -FE模型研究了成分应变对PF界面厚度的影响,并将模拟结果与具有平坦界面的无限薄膜扩散耦合的解析解进行了比较。研究了二元多层薄膜的形态不稳定性。考虑具有和不具有中间相的合金,以及具有稳定和亚稳定中间相的情况。考虑到层的初始厚度,组成应变以及稳定/不稳定的中间相的生长对多层薄膜的不稳定性的影响,进行了多层系统中的转变图。结果表明,在某些情况下,相变,中间相成核和生长或由于高成分应变而引起的层变形会导致层变粗,从而导致原始设计多层的机械性能和材料性能不同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号