首页> 外文会议>Correlation Optics >Image processing tools dedicated to quantification in 3-D fluorescence microscopy
【24h】

Image processing tools dedicated to quantification in 3-D fluorescence microscopy

机译:专门用于3-D荧光显微镜定量的图像处理工具

获取原文
获取原文并翻译 | 示例

摘要

3-D optical fluorescent microscopy now becomes an efficient tool for the volume investigation of living biological samples. Developments in instrumentation have permitted to beat off the conventional Abbe limit. In any case the recorded image can be described by the convolution equation between the original object and the Point Spread Function (PSF) of the acquisition system. Due to the finite resolution of the instrument, the original object is recorded with distortions and blurring, and contaminated by noise. This induces that relevant biological information cannot be extracted directly from raw data stacks. If the goal is 3-D quantitative analysis, then to assess optimal performance of the instrument and to ensure the data acquisition reproducibility, the system characterization is mandatory. The PSF represents the properties of the image acquisition system; we have proposed the use of statistical tools and Zernike moments to describe a 3-D PSF system and to quantify the variation of the PSF. This first step toward standardization is helpful to define an acquisition protocol optimizing exploitation of the microscope depending on the studied biological sample. Before the extraction of geometrical information and/or intensities quantification, the data restoration is mandatory. Reduction of out-of-focus light is carried out computationally by deconvolution process. But other phenomena occur during acquisition, like fluorescence photo degradation named "bleaching", inducing an alteration of information needed for restoration. Therefore, we have developed a protocol to pre-process data before the application of deconvolution algorithms. A large number of deconvolution methods have been described and are now available in commercial package. One major difficulty to use this software is the introduction by the user of the "best" regularization parameters. We have pointed out that automating the choice of the regularization level; also greatly improves the reliability of the measurements although it facilitates the use. Furthermore, to increase the quality and the repeatability of quantitative measurements a pre-filtering of images improves the stability of deconvolution process. In the same way, the PSF pre-filtering stabilizes the deconvolution process. We have shown that Zemike polynomials can be used to reconstruct experimental PSF, preserving system characteristics and removing the noise contained in the PSF.
机译:3-D光学荧光显微镜现在已成为对活生物样品进行体积研究的有效工具。仪器仪表的发展已经突破了传统的阿贝极限。无论如何,可以通过原始对象与采集系统的点扩展函数(PSF)之间的卷积方程来描述所记录的图像。由于仪器的分辨率有限,原始对象会被记录为失真和模糊,并被噪声污染。这导致不能直接从原始数据堆栈中提取相关的生物学信息。如果目标是3D定量分析,则要评估仪器的最佳性能并确保数据采集的可重复性,则必须进行系统表征。 PSF表示图像采集系统的属性;我们建议使用统计工具和Zernike矩来描述3-D PSF系统并量化PSF的变化。迈向标准化的第一步有助于根据研究的生物样品定义优化显微镜开发的采集方案。在提取几何信息和/或强度定量之前,必须进行数据恢复。散焦光的减少是通过反卷积过程通过计算实现的。但是在采集过程中还会发生其他现象,例如称为“漂白”的荧光照片降解,从而导致恢复所需信息的改变。因此,我们已经开发出一种协议,可以在应用反卷积算法之前对数据进行预处理。已经描述了许多解卷积方法,并且现在可以在商业包装中使用。使用该软件的一个主要困难是用户介绍“最佳”正则化参数。我们已经指出,自动选择正则化级别;尽管它便于使用,但也大大提高了测量的可靠性。此外,为了提高定量测量的质量和可重复性,对图像进行预过滤可提高解卷积过程的稳定性。以同样的方式,PSF预过滤可稳定去卷积过程。我们证明了Zemike多项式可用于重构实验PSF,保留系统特性并消除PSF中包含的噪声。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号