首页> 外文会议>Conference on Towards Other Earths DARWIN/TPF and the Search for Extrasolar Terrestrial Planets; 20030422-20030425; Heidelberg; DE >DIRECT DETECTION OF TERRESTRIAL EXOPLANETS: COMPARING THE POTENTIAL FOR SPACE AND GROUND TELESCOPES
【24h】

DIRECT DETECTION OF TERRESTRIAL EXOPLANETS: COMPARING THE POTENTIAL FOR SPACE AND GROUND TELESCOPES

机译:直接检测陆地外星人:比较空间和地面远景的潜力

获取原文
获取原文并翻译 | 示例

摘要

Telescopes of various different designs are potentially capable of detecting extrasolar terrestrial planets. We analyze here in a consistent way the limiting sensitivities set by photon noise from the background underlying the planet signal, which may be of thermal, zodiacal or stellar origin. The strength of the unsuppressed stellar halo is itself set by photon noise in wavefront measurement. While optical telescopes have potentially higher limiting sensitivity, thermal detection is more secure. At 11 μm wavelength, the planet/star contrast is 1000 times more favorable than in the optical. Together with the longer wavelength, this leads to a 500 times more relaxed tolerance for star suppression, one that can be met by a fast servo based on the bright star flux sensed at shorter wavelengths. Either Darwin or a 100 m ground telescope should be capable of thermal detection of the earth in a solar system twin at 10 pc at 5 to 10σ in 24 hr. At optical wavelengths, the limiting sensitivity for space telescopes is set at the 10-30σ level by photon noise in the zodiacal background. Reaching this limit, as do the deep fields of the Hubble Space Telescope, will require extreme coronagraphic suppression of the bright star at 0.1 arcsec separation. The ~1 m-scale Fourier components of the wavefront would need to have stable amplitude ≤ 2 picometers, a severe challenge. On the ground, fast atmospheric correction at the photon noise limit will leave residual Fourier amplitudes of 20-60 pm, for a halo background 100-1000 times zodiacal. But given larger apertures and stronger fluxes, optical sensitivity can still be high, provided the photon noise limit of short halo exposures can be maintained in a long-term average. If this challenge can be met, detection in 24 hr would be at the 5σ level for a 20 m Antarctic telescope, ~50σ for the 100 m OWL. If a terrestrial planet were detected at 10 pc, a spectrum that could reveal water and oxygen would be of great interest. Thermal features can be accessed only from space, where broad spectral cover is possible. Optical spectroscopy could be undertaken with a 100 m telescope on the ground. An Antarctic location would give high sensitivity to water, and the added benefit of thermal imaging with high sensitivity and resolution.
机译:各种不同设计的望远镜都有可能探测太阳系外行星。在这里,我们以一致的方式分析了来自行星信号背后背景的光子噪声所设置的极限灵敏度,这些信号可能是热,黄道或恒星起源的。未抑制的恒星光晕的强度本身是由波前测量中的光子噪声设置的。虽然光学望远镜的极限灵敏度可能更高,但热检测更加安全。在11μm的波长下,行星/恒星的对比度比光学上的对比度高1000倍。再加上更长的波长,这使得对恒星抑制的容忍度提高了500倍,而基于短波长感应到的明亮恒星通量的快速伺服可以满足这一要求。达尔文或100 m地面望远镜应该能够在24小时内以10 pc在5至10σ的比重对太阳系双胞胎中的地球进行热探测。在光学波长下,黄道带背景中的光子噪声将空间望远镜的极限灵敏度设置为10-30σ。要达到这个极限,就像哈勃太空望远镜的深场一样,将需要以0.1 arcsec的间隔对明亮的恒星进行极端的电晕抑制。波前的〜1 m尺度傅立叶分量必须具有稳定的振幅≤2皮米,这是一个严峻的挑战。在地面上,在光子噪声极限处进行快速大气校正将留下20-60 pm的残留傅立叶振幅,这是黄道背景100-1000倍的黄道带。但是如果给定更大的孔径和更强的通量,只要可以将长期光环暴露的光子噪声限制保持在长期平均值,光学灵敏度仍然可以很高。如果能够应对这一挑战,则对于20 m南极望远镜,在24小时内的探测将处于5σ的水平,对于100 m OWL,探测将在〜50σ的水平。如果以10 pc的速度探测到一个地球行星,那么可以揭示水和氧的光谱将非常令人感兴趣。只能从可能覆盖广泛光谱的空间访问热功能。可以使用地面上的100 m望远镜进行光谱分析。南极位置将对水具有高灵敏度,并具有高灵敏度和分辨率的热成像附加好处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号