首页> 外文会议>Conference on Nanophotonics, Nanostructure, and Nanometrology; 20071112-14; Beijing(CN) >Mechanisms of plasmon induced charge separation and recombination at gold nanoparticle supported on different size TiO_2 film systems
【24h】

Mechanisms of plasmon induced charge separation and recombination at gold nanoparticle supported on different size TiO_2 film systems

机译:负载在不同尺寸TiO_2薄膜系统上的金纳米粒子上的等离激元诱导的电荷分离和复合机理

获取原文
获取原文并翻译 | 示例

摘要

Study of plasmon-induced charge transfer mechanism in gold-TiO_2 system is crucial and promising in the solar cell application. To investigate charge separation and recombination dynamics in gold/TiO2 nanoparticle systems, we used ultrafast visible-pump/IR-probe femtosecond transient absorption spectroscopy method. In our experimental study, anatase TiO_2 with different particle size 9 nm and 20 nm were chosen as electron acceptors. Plasmon-induced electron transfer from the gold nanoparticle to the conduction band of TiO_2 was studied by optical excitation of the surface plasmon band of gold nanoparticle at 550 nm. The transient absorption kinetics were studied by probing at 3440 nm to observe intraband free electron adsorption in TiO_2. In our experimental results, electron injection was found to be completed within the apparatus time resolution (240 fs), the charge recombination decay within 1.5 ns was nonexponential. And when laser power changed from 0.5 μJ to 1.9 μJ, the recombination decay didn't depend on the excitation intensity. It is interesting that we found the measured back electron transfer kinetics up to 1.5 ns were strongly dependent on the particle size of TiO_2. The plasmon-induced charge transfer mechanisms will be discussed.
机译:金-TiO_2体系中等离激元诱导的电荷转移机理的研究在太阳能电池应用中至关重要。为了研究金/ TiO2纳米粒子系统中的电荷分离和复合动力学,我们使用了超快的可见泵/红外探针飞秒瞬态吸收光谱法。在我们的实验研究中,选择了9 nm和20 nm不同粒径的锐钛矿型TiO_2作为电子受体。通过在550 nm处对金纳米颗粒的表面等离激元带进行光激发,研究了等离子体诱导的电子从金纳米颗粒向TiO_2导带的转移。通过在3440 nm处探测来研究瞬态吸收动力学,以观察带内自由电子在TiO_2中的吸附。在我们的实验结果中,发现在装置时间分辨率(240 fs)内完成了电子注入,而1.5 ns内的电荷复合衰减是非指数的。而且,当激光功率从0.5μJ变为1.9μJ时,复合衰减与激发强度无关。有趣的是,我们发现在长达1.5 ns的时间内测得的反向电子转移动力学强烈依赖于TiO_2的粒径。将讨论等离子体激元诱导的电荷转移机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号