【24h】

Navigation System for flexible Endoscopes

机译:柔性内窥镜导航系统

获取原文
获取原文并翻译 | 示例

摘要

Endoscopic Ultrasound (EUS) features flexible endoscopes equipped with a radial or linear array scanhead allowing high resolution examination of organs adjacent to the upper gastrointestinal tract. An optical system based on fibre-glass or a CCD-chip allows additional orientation. However, 3-dimensional orientation and correct identification of the various anatomical structures may be difficult. It therefore seems desirable to merge realtime US images with high resolution CT or MR images acquired prior to EUS to simplify navigation during the intervention. The additional information provided by CT or MR images might facilitate diagnosis of tumors and, ultimately, guided puncture of suspicious lesions. We built a grid with 15 plastic spheres and measured their positions relatively to five fiducial markers placed on the top of the grid. For this measurement we used an optical tracking system (OTS) (Polaris, NDI, Can). Two sensors of an electro magnetic tracking system (EMTS) (Aurora, NDI, Can) were mounted on a flexible endoscope to enable a free hand ultrasound calibration. To get the position of the plastic spheres in the emitter coordinate system of the EMTS we applied a point-to-point registration (Horn) using the coordinates of the fiducial markers in both coordinate systems (OTS and EMTS). For the transformation from the EMTS coordinate system to the CT space the Horn algorithm was adopted again using the fiducial markers. Visualization was enabled by the use of the AVW-4.0 library (Biomedical Imaging Resource, Mayo Clinic, Rochester/MN, USA). To evaluate the suitability of our new navigation system we measured the Fiducial Registration Error (FRE) of the diverse registrations and the Target Registration Error (TRE) for the complete transformation from the US space to the CT space. The FRE for the ultrasound calibration amounted to 4.5 mm +- 4.2 mm, resulting from 10 calibration procedures. For the transformation from the OTS reference system to the EMTS emitter space we found an average FRE of 0.8 mm+-0.2 mm. The FRE for the CT registration was 1.0 mm+-0.3 mm. The TRE was found to be 3.8 mm+-1.3 mmifwetarget the same spheres which where used for the calibration procedure. A movement of the phantom results in higher TREs because of the orientation sensitivity of the sensor. In that case the TRE in the area where the biopsy is supposed to be taken place was found to be 7.9 mm +- 3.2 mm. Our system provides the interventionist with additional information about position and orientation of the used flexible instrument. Additionally, it improves the marksmanship of biopsies. The use of the miniaturized EMTS enables for the first time the navigation of flexible instruments in this way. For the successful application of navigation systems in interventional radiology, an accuracy in the range of 5 mm is desirable. The accuracy of the localization of a biopsy-relevant point in CT space are just 3 mm too high as required. We believe to overcome this problem by using endoscopic US scan head which are operating at frequencies lower or higher than 7.5 MHz. A considerable restraint constitutes the small characteristic volume (360mm x 600mm x 600mm), which requires for most application an additional optical system.
机译:内窥镜超声检查(EUS)具有灵活的内窥镜,配有放射状或线性阵列扫描头,可以高分辨率检查邻近上消化道的器官。基于玻璃纤维或CCD芯片的光学系统允许附加方向。但是,三维定向和正确识别各种解剖结构可能很困难。因此,似乎希望将实时US图像与EUS之前获取的高分辨率CT或MR图像合并,以简化干预期间的导航。 CT或MR图像提供的其他信息可能有助于诊断肿瘤,并最终引导可疑病变的穿刺。我们用15个塑料球构建了一个网格,并相对于放置在网格顶部的五个基准标记测量了它们的位置。对于此测量,我们使用了光学跟踪系统(OTS)(Polaris,NDI,Can)。电磁跟踪系统(EMTS)的两个传感器(Aurora,NDI,Can)安装在柔性内窥镜上,可以进行自由手超声校准。为了获得塑料球在EMTS的发射器坐标系中的位置,我们在两个坐标系(OTS和EMTS)中都使用了基准标记的坐标进行了点对点配准(角)。为了从EMTS坐标系到CT空间的转换,再次使用基准标记采用了Horn算法。通过使用AVW-4.0库(美国罗切斯特/明尼苏达州梅奥诊所的生物医学成像资源)实现了可视化。为了评估我们新导航系统的适用性,我们测量了各种注册的基准注册错误(FRE)和目标注册错误(TRE),以便从美国空间完全转换为CT空间。超声波校准的FRE总计为4.5 mm±4.2 mm,这是由10个校准程序得出的。对于从OTS参考系统到EMTS发射器空间的转换,我们发现平均FRE为0.8 mm + -0.2 mm。 CT套准的FRE为1.0 mm + -0.3 mm。如果针对校准程序所用的相同球体,则TRE被发现为3.8 mm + -1.3 mm。由于传感器的方向敏感性,体模的移动导致较高的TRE。在那种情况下,在应该进行活检的区域中的TRE被发现为7.9mm±3.2mm。我们的系统为介入医师提供了有关所使用的柔性器械的位置和方向的其他信息。另外,它改善了活检的枪法。小型化的EMTS的使用首次使这种灵活的仪器导航成为可能。为了成功地将导航系统应用于介入放射学,要求5 mm的精度。 CT活检相关点的定位精度仅高出所需的3 mm。我们相信可以通过使用频率低于或高于7.5 MHz的内窥镜US扫描头来克服此问题。相当大的限制构成了较小的特征体积(360mm x 600mm x 600mm),这在大多数应用中需要附加的光学系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号