首页> 外文会议>Computational Complexity (CCC), 2012 IEEE 27th Annual Conference on >Limitations of Lower-Bound Methods for the Wire Complexity of Boolean Operators
【24h】

Limitations of Lower-Bound Methods for the Wire Complexity of Boolean Operators

机译:布尔算子线复杂度的下界方法的局限性

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

We study the circuit complexity of Boolean operators, i.e., collections of Boolean functions defined over a common input. Our focus is the well-studied model in which arbitrary Boolean functions are allowed as gates, and in which a circuit''s complexity is measured by its depth and number of wires. We show sharp limitations of several existing lower-bound methods for this model. First, we study an information-theoretic lower-bound method due to Cherukhin, that yields bounds of form $Omega_d(n cdot lambda_{d - 1}(n))$ on the number of wires needed to compute cyclic convolutions in depth $d geq 2$. This was the first improvement over the lower bounds provided by the well-known super concentrator technique (for $d = 2, 3$ and for even $d geq 4$). Cherukhin''s method was formalized by Jukna as a general lower-bound criterion for Boolean operators, the ``Strong Multiscale Entropy'''' (SME) property. It seemed plausible that this property could imply significantly better lower bounds by an improved analysis. However, we show that this is not the case, by exhibiting an explicit operator with the SME property that is computable in depth $d$ with $cO(n cdot lambda_{d - 1}(n))$ wires, for $d = 2, 3$ and for even $d geq 6$. Next, we show limitations of two simpler lower-bound criteria given by Jukna: the ``entropy method" for general operators, and the ``pair wise-distance method" for linear operators. We show that neither method gives super-linear lower bounds for depth $3$. In the process, we obtain the first known polynomial separation between the depth-2 and depth-3 wire complexities for an explicit operator. We also continue the study (initiated by Jukna) of the complexity of ``representing" a linear operator by bounded-depth circuits, a weaker notion than computing the operator.
机译:我们研究布尔运算符的电路复杂性,即在公共输入上定义的布尔函数的集合。我们的研究重点是经过深入研究的模型,其中允许将任意布尔函数用作门,并且其中电路的复杂性通过其深度和导线数来衡量。我们对此模型显示了几种现有的下界方法的明显限制。首先,我们研究由于Cherukhin而产生的信息理论下界方法,该方法在计算深度循环卷积所需的导线数量上产生形式为$ Omega_d(n cdot lambda_ {d-1}(n))$的边界。 d geq 2 $。这是对著名的超级集中器技术提供的下界的第一个改进(对于$ d = 2、3 $,甚至$ d geq 4 $)。 Cherukhin的方法由Jukna正式确定为布尔运算符的通用下界准则,即``强多尺度熵''(SME)属性。通过改进分析,该性质可能暗示明显更好的下限。但是,通过展示一个具有SME属性的显式运算符,可以用$ cO(n cdot lambda_ {d-1}(n))$导线显示深度为d $$的$ d,来表明情况并非如此。 = 2,3 $,甚至$ d geq 6 $。接下来,我们展示了Jukna给出的两个更简单的下界准则的局限性:通用算子的``熵方法''和线性算子的``成对距离方法''。我们表明,这两种方法都没有给出深度$ 3 $的超线性下界。在此过程中,我们为显式算子获得了深度2和深度3导线复杂度之间的第一个已知的多项式间隔。我们还继续研究(由尤克纳(Jukna)发起),以有界深度电路``表示''线性算子的复杂性,这一概念比计算算子要弱。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号