首页> 外文会议>Composites at Lake Louise 2017 >IN-SILICO DESIGN OF NANOCOMPOSITE SCAFFOLDS FOR BONE REGENERATION
【24h】

IN-SILICO DESIGN OF NANOCOMPOSITE SCAFFOLDS FOR BONE REGENERATION

机译:用于骨再生的纳米复合支架的硅胶设计

获取原文
获取原文并翻译 | 示例

摘要

The accurate prediction of the evolution of mechanical properties of tissue engineering scaffolds to bridge nonunion bone defects is critical for the bone regenerative technologies to become viable in clinical applications. In addition to the scaffold geometry, the scaffold mechanics needs to be tailored to the patient for an effective outcome. In in vivo conditions, the cell seeded scaffolds degrade as the cells seeded on the scaffolds grow, differentiate and regenerate tissue. A fine balance of degradation and "healing" of the living-non-living construct needs to be achieved to fill the defect. In our research group, clay based nanocomposite materials have been used to regenerate bone that has structure and properties identical to human bone. The scaffolds are made of unnatural-aminoacid intercalated clay, in-situ mineralized hydroxyapatite (HAP) in the clay galleries and a degradable polymer polycaprolactone. These scaffolds are shown to mediate mesenchymal stem cell differentiation to osteoblastic lineages. We have developed a novel computational multiscale approach that spans molecular scale to the macroscale. The model incorporates degradation of nanocomposite bone tissue engineering scaffold system and "healing" as the tissue is regenerated. Realistic molecular models of the nanocomposite material system are created using molecular dynamics. Steered molecular dynamics simulations provide the stress-strain response of the material. The response is introduced into microCT image based 3D finite element models of the scaffolds. Damage mechanics based analytical degradation and healing models capture the evolving scaffold mechanics with time. This in silico approach provides the ability to predict the response of implanted scaffolds over time and also tailor the design of nanocomposite biomaterials and scaffolds with targeted properties for bridging nonunion bone defects for personalized medicine.
机译:组织工程支架弥合骨不连的骨缺损的力学性能演变的准确预测对于骨再生技术在临床应用中变得可行至关重要。除了脚手架的几何形状外,还需要为患者量身定制脚手架力学,以获得有效的结果。在体内条件下,随着接种在支架上的细胞生长,分化和再生组织,细胞接种的支架降解。需要实现无生命结构的降解和“修复”的良好平衡,以填补缺陷。在我们的研究小组中,基于粘土的纳米复合材料已被用于再生具有与人体骨骼相同的结构和特性的骨骼。支架由非天然氨基酸插层粘土,粘土通道中的原位矿化羟磷灰石(HAP)和可降解聚合物聚己内酯制成。这些支架显示介导间充质干细胞分化为成骨细胞谱系。我们已经开发了一种新颖的计算多尺度方法,该方法涵盖了分子尺度到宏观尺度。该模型结合了纳米复合骨组织工程支架系统的降解和组织再生时的“愈合”。纳米复合材料系统的现实分子模型是使用分子动力学创建的。受控的分子动力学模拟提供了材料的应力应变响应。响应被引入基于microCT图像的3D支架有限元模型中。基于损伤力学的分析退化和修复模型可以捕获随时间变化的脚手架力学。这种计算机方法提供了预测植入的支架随时间变化的能力,还可以定制具有目标特性的纳米复合生物材料和支架的设计,以弥合骨不连骨缺损,从而实现个性化医学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号