【24h】

POROSITY GOVERNS NORMAL STRESSES IN POLYMER GELS

机译:孔隙度控制聚合物凝胶中的正常应力

获取原文
获取原文并翻译 | 示例

摘要

When sheared, most elastic solids such as metals, rubbers and polymer hydrogels dilate in the direction perpendicular to the shear plane. This well-known behaviour known as the Poynting effect is characterized by a positive normal stress [1]. Surprisingly, biopolymer gels made of fibrous proteins such as fibrin and collagen and many tissues exhibit the opposite effect, contracting under shear and displaying a negative normal stress [2, 3]. Here we show that this anomalous behaviour originates from the open network structure of biopolymer gels, which facilitates interstitial fluid flow during shear. Using fibrin networks with a controllable pore size as a model system, we show that the normal stress response to an applied shear is positive at short times, but decreases to negative values with a characteristic time scale set by pore size. Using a two-fluid model, we develop a quantitative theory that unifies the opposite behaviours encountered in synthetic and biopolymer gels. Synthetic polymer gels are impermeable to solvent flow and thus effectively incompressible at typical experimental time scales, whereas biopolymer gels are effectively compressible. Our findings suggest a new route to tailor elastic instabilities such as the die swell effect that often hamper processing of polymer materials and furthermore show that poroelastic effects play a much more important role in the mechanical properties of cells and tissues than previously anticipated.
机译:剪切时,大多数弹性固体(例如金属,橡胶和聚合物水凝胶)会在垂直于剪切平面的方向上膨胀。这种众所周知的称为“ Poynting效应”的行为具有正法向应力[1]。出乎意料的是,由纤维蛋白(如纤维蛋白和胶原蛋白)制成的生物聚合物凝胶和许多组织表现出相反的作用,在剪切作用下收缩并显示负法向应力[2,3]。在这里,我们表明这种异常行为源自生物聚合物凝胶的开放网络结构,这有助于剪切过程中的组织液流动。使用具有可控制孔径的纤维蛋白网络作为模型系统,我们显示出对施加的剪力的法向应力响应在短时间内为正,但在由孔径设置的特征时间尺度下降低至负值。使用两流体模型,我们开发了一种定量理论,该理论统一了合成和生物聚合物凝胶中遇到的相反行为。合成聚合物凝胶不可渗透溶剂流,因此在典型的实验时间尺度上有效不可压缩,而生物聚合物凝胶可有效压缩。我们的发现提出了一种新的途径来调整弹性不稳定性,例如冲模膨胀效应,通常会阻碍聚合物材料的加工,此外,多孔弹性效应在细胞和组织的机械性能中起着比以前预期的重要得多的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号