首页> 外文会议>Clinical and translational neurohotonics; neural imaging and sensing; and optogenetics and optical manipulation >Hybrid polymer waveguide characterization for microoptical tools with integrated laser diode chips for optogenetic applications at 430 nm and 650 nm
【24h】

Hybrid polymer waveguide characterization for microoptical tools with integrated laser diode chips for optogenetic applications at 430 nm and 650 nm

机译:具有集成激光二极管芯片的微光学工具的混合聚合物波导特性,用于430 nm和650 nm的光遗传学应用

获取原文
获取原文并翻译 | 示例

摘要

Appropriate micro-optical tools are required to exploit the key advantages of optogenetics in neuroscience, i.e. optical stimulation and inhibition of neural tissue at high spatial as well as temporal resolutions, providing cell specificity and the opportunity to simultaneously record electrophysiological signals. Besides the need for minimally invasive probes mandatory for a reduced tissue damage, highly flexible or wireless interfaces are demanded for experiments with freely behaving animals. Both these technical system requirements are achieved by integrating miniaturized waveguides for light transmission combined with bare laser diode (LD) chips integrated directly into neural probes. This paper describes a system concept using integrated, side emitting LD chips directly coupled to miniaturized waveguides implemented on silicon (Si) substrates. It details the fabrication, assembly, and optical as well as electrical characterization of waveguides (WG) made from the hybrid polymer Ormorcere~®. The WGs were photolithographically patterned to have a cross-section of 20×15 μm~2. Bare LD chips are flip-chip bonded to electroplated gold (Au) pads with ±5 μm accuracy relative to the WG facets. Transmitted radiant fluxes for blue (430 nm, (Al,In)GaN) and red (650 nm, AlGaInP) LDs are measured to be 150 uW (I_D= 35 mA, 5% duty cycle) and 4.35 uW (I_D = 225 mA, 0.5% duty cycle), respectively. This corresponds to an efficiency of the coupled and transmitted light of 44% for the red LDs. Long term measurements for 24 h using these systems with red LDs showed a decrease of the radiant flux of about 4% caused by LD aging at stable WG transmission properties. WGs immersed into Ringer's solution showed no significant change of their optical transmission properties after four weeks of exposure to the ionic solution.
机译:需要适当的微光学工具来利用光遗传学在神经科学中的关键优势,即在高空间和时间分辨率下光学刺激和抑制神经组织,从而提供细胞特异性和同时记录电生理信号的机会。除了需要微创探针以减少组织损伤外,还需要高度灵活或无线的接口来进行自由行为动物的实验。通过集成用于光传输的微型波导与直接集成到神经探针中的裸激光二极管(LD)芯片相结合,可以实现这两个技术系统要求。本文描述了使用集成的侧面发射LD芯片直接耦合到在硅(Si)衬底上实现的小型化波导的系统概念。它详细介绍了由杂化聚合物Ormorcere®制成的波导(WG)的制造,组装,光学以及电气特性。 WG被光刻图案化以具有20×15μm〜2的横截面。裸露LD芯片倒装芯片连接到电镀金(Au)焊盘,相对于WG刻面精度为±5μm。蓝色(430 nm,(Al,In)GaN)和红色(650 nm,AlGaInP)LD的透射辐射通量测得为150 uW(I_D = 35 mA,5%占空比)和4.35 uW(I_D = 225 mA) ,0.5%的占空比)。这对应于红色LD的耦合光和透射光的效率为44%。使用这些带有红色LD的系统进行的24小时长期测量表明,在稳定的WG传输特性下,LD老化会导致辐射通量下降约4%。浸入林格氏溶液的WG在暴露于离子溶液4周后,其光学传输性能没有明显变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号