首页> 外文会议>Clearwater clean energy conference 2017 >Chemical Looping Combustion Reference Plant Design and Sensitivity Studies Using NETL's Oxygen Carrier
【24h】

Chemical Looping Combustion Reference Plant Design and Sensitivity Studies Using NETL's Oxygen Carrier

机译:使用NETL氧气载体的化学循环燃烧参考装置设计和灵敏度研究

获取原文
获取原文并翻译 | 示例

摘要

The U.S. Department of Energy (DOE) provides a worldwide leadership role in the development of advanced fossil fuel-based energy conversion technologies, with a focus on electric power generation with carbon capture and storage (CCS). As part of DOE's Office of Fossil Energy, the National Energy Technology Laboratory (NETL) implements research, development and demonstration (RD&D) programs that address the challenges of reducing greenhouse gas emissions. To meet this challenge, FE/NETL is interested in evaluating advanced power cycles that will maximize system efficiency and performance, while minimizing carbon dioxide (CO_2) emissions and the costs of CCS. An emerging coal-fired power plant technology, chemical looping combustion (CLC), is part of NETL's R&D portfolio due to its potential to significantly reduce the cost of producing power from coal while capturing CO_2. In CLC, oxygen carrier particles replace the oxygen source (air or produced high-purity oxygen) used in a conventional or oxycombustion coal plant. The reduced form of the carrier material extracts oxygen via reaction air - the oxidized carrier is then reduced in reaction with the fuel, producing a CO_2 and water-rich combustion effluent stream. As in oxycombustion-based systems, CO_2 separation in CLC is facile - condensation of the water from the combustion effluent results in a nearly-pure CO_2 stream. However, in an oxycombustion plant, high-purity oxygen is derived from air via a cryogenic air separation unit (ASU), which adds significant auxiliary load and capital cost. CO_2 separation in a conventional plant must be accomplished from CO_2 -dilute flue gas (12-15 vol% CO~2) via a post-combustion CO~2 capture technology (e.g., solvent, sorbent, membrane, etc.), with significant attendant auxiliary load and capital cost to the plant. CLC holds promise for efficient, low-cost power generation from coal, without the capital cost and efficiency penalty associated with the use of an ASU or dedicated CO_2 capture system. The objective of the presented study is to evaluate the performance and cost of a CLC system which utilizes a novel, NETL-developed Cu/Fe-based oxygen carrier material. This is a highly reactive, but expensive, material. Performance and cost sensitivity to key CLC parameters is assessed to determine if the increased reactivity can overcome its cost penalty relative to conventional Fe-based oxygen carriers. An atmospheric pressure, circulating fluidized bed CLC plant design incorporating a supercritical steam Rankine cycle and conventional CO_2 compression technology, studied previously by NETL, was chosen as the basis for this study. The analysis will be presented and results compared to the performance and cost of: (i) a conventional, state-of-the-art pulverized coal (PC) power plant using solvent-based CO_2 capture, and (ii) a circulating fluidized bed-based CLC power plant using an Fe-based oxygen carrier material. The significance of carrier properties and key operating parameters will be discussed in relation to predicted plant performance and/or cost.
机译:美国能源部(DOE)在开发先进的基于化石燃料的能源转换技术方面发挥着全球领导作用,重点是通过碳捕集与封存(CCS)进行发电。作为美国能源部化石能源办公室的一部分,国家能源技术实验室(NETL)实施了研究,开发和示范(RD&D)计划,以应对减少温室气体排放的挑战。为了应对这一挑战,FE / NETL有兴趣评估先进的电源循环,以最大程度地提高系统效率和性能,同时最大程度地减少二氧化碳(CO_2)排放量和CCS成本。 NETL研发产品组合的一部分是一种新兴的燃煤发电厂技术,即化学循环燃烧(CLC),因为它具有在捕集CO_2的同时显着降低燃煤发电成本的潜力。在CLC中,载氧颗粒代替了常规或富氧燃煤电厂中使用的氧气源(空气或产生的高纯度氧气)。载体材料的还原形式通过反应空气提取氧气-氧化后的载体与燃料反应而还原,产生了CO_2和富水燃烧废气流。像在基于氧气燃烧的系统中一样,CLC中的CO_2分离很容易-燃烧废水中的水冷凝会产生近乎纯净的CO_2流。但是,在氧气燃烧厂中,高纯度氧气是通过低温空气分离装置(ASU)从空气中提取的,这增加了相当大的辅助负荷和资本成本。常规工厂中的CO_2分离必须通过燃烧后的CO〜2捕集技术(例如,溶剂,吸附剂,膜等)从稀有CO_2的烟道气(12-15体积%的CO〜2)中完成。随之而来的辅助负荷和工厂的资本成本。 CLC有望从煤炭中高效,低成本地发电,而不会因使用ASU或专用CO_2捕集系统而产生资本成本和效率损失。本研究的目的是评估采用新型,NETL开发的基于Cu / Fe的氧载体材料的CLC系统的性能和成本。这是一种高反应性,但价格昂贵的材料。评估了对关键CLC参数的性能和成本敏感性,以确定相对于传统的基于Fe的氧气载体,增加的反应性是否可以克服其成本损失。 NETL先前研究的大气压,循环流化床CLC装置设计采用了超临界蒸汽兰金循环和常规的CO_2压缩技术,作为本研究的基础。将介绍该分析并将其结果与以下各项的性能和成本进行比较:(i)使用溶剂基CO_2捕集的常规,最先进的粉煤(PC)电厂,以及(ii)循环流化床铁基氧气载体材料的碳基CLC电厂。载体性质和关键操作参数的重要性将与预计的工厂性能和/或成本进行讨论。

著录项

  • 来源
  • 会议地点 Clearwater(US);Clearwater FL(US)
  • 作者单位

    U.S. DOE-NETL, 3610 Collins Ferry Rd., Morgantown, WV, USA;

    KeyLogic Systems, Inc.. - NETL, 626 Cochrans Mill Rd., Pittsburgh, PA, USA;

    Deloitte Consulting, LLP - NETL, 626 Cochrans Mill Rd., Pittsburgh, PA, USA;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号