首页> 外文会议>Chemical and Biological Standoff Detection III >Estimating aerosol concentration and spectral backscatter with multi-wavelength range-resolved lidar
【24h】

Estimating aerosol concentration and spectral backscatter with multi-wavelength range-resolved lidar

机译:使用多波长范围分辨激光雷达估算气溶胶浓度和光谱反向散射

获取原文
获取原文并翻译 | 示例

摘要

Algorithm development for detecting and discriminating atmospheric aerosols using range-resolved lidar is a straightforward, if non-trivial, application of well-established techniques of statistical signal processing assuming the aerosol backscatter coefficients are known as a function of wavelength. Unfortunately, in contrast to the analogous case of vapors, in most aerosol applications those coefficients are rarely known accurately. This is due to a combination of factors: (1) unknown refractive index dependence on wavelength, particularly for bioaerosols; (2) unknown particle size distribution; and (3) lack of particle sphericity making Mie calculations unreliable. Uncertainties in any of these factors can distort the backscatter cross-section spectral dependence to the extent that aerosol identification becomes impossible. This paper presents a sequential algorithm for estimating both the aerosol concentration dependence on range and time and backscatter coefficient spectral signatures for a set of materials using M wavelengths with data available prior to the aerosol release for estimating the ambient lidar return. The range-dependence of the aerosol is modeled as an expansion of the concentration in an orthonormal basis set whose coefficients carry the time dependence. The basic idea is to run two estimators in parallel: a Kalman filter for the expansion coefficients, and a maximum likelihood estimator for the set of aerosol backscatter coefficients. These algorithms exchange information continuously over the data processing stream. The approach is illustrated on atmospheric backscatter lidar data collected by the U. S. Army multi-wavelength lidar from aerosol releases at the recent JBSDS trials at Dugway Proving Ground, UT.
机译:假设使用气溶胶反向散射系数是波长的函数,使用距离分辨激光雷达检测和区分大气气溶胶的算法开发是一种简单易行的应用(如果不是很简单的话),它是统计信号处理的公认技术的应用。不幸的是,与类似的蒸气情况相反,在大多数气雾剂应用中,很少准确地知道这些系数。这是由于多种因素引起的:(1)未知的折射率对波长的依赖性,特别是对于生物气溶胶; (2)未知的粒径分布; (3)缺乏粒子球形性,导致Mie计算不可靠。这些因素中的任何一个因素的不确定性都会使反向散射截面的光谱依赖性失真到无法识别气溶胶的程度。本文提出了一种顺序算法,用于估计使用M个波长的一组材料的气溶胶浓度对距离和时间的依赖性以及后向散射系数光谱特征,并在气溶胶释放之前获得可用数据以估计环境激光雷达返回。气溶胶的范围相关性被建模为浓度在正交基数集中的扩展,该正交基数的系数带有时间依赖性。基本思想是并行运行两个估计器:一个用于膨胀系数的卡尔曼滤波器,以及一个用于气溶胶反向散射系数集的最大似然估计器。这些算法在数据处理流上连续交换信息。这种方法在美国陆军多波长激光雷达在最近的JBSDS试验中在美国犹他州Dugway试验场收集的大气后向散射激光雷达数据中得到了说明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号