首页> 外文会议>Conference on vaccine technology VI >△∏=0 REVERSE OSMOSIS ENRICHES A HIGH OSMOTIC PRESSURE SOLUTION FROM A LOW-TITER FERMENTATION BROTH TO A SATURATED SOLUTION OR SALT FORM USING RO AND NF MEMBRANES
【24h】

△∏=0 REVERSE OSMOSIS ENRICHES A HIGH OSMOTIC PRESSURE SOLUTION FROM A LOW-TITER FERMENTATION BROTH TO A SATURATED SOLUTION OR SALT FORM USING RO AND NF MEMBRANES

机译:△∏ = 0反渗透可通过使用RO和NF膜从低滴度发酵液发酵成饱和溶液或盐形式,从而获得高渗透压溶液

获取原文

摘要

Diverse biotechnology products are produced by microbial oreukaryotic cell fermentations in aqueous solutions. Removal of water is inevitable to enrich the product into a concentrated solution or into solid forms (such as crystals). The theoretical minimum energy required to remove 1 m3 of water is 716 kWh for thermal methods and 1 kWh for reverse osmosis (RO). In practice, the thermal methods equipped with heat energy recycling needs about 25 kWh to remove 1 m3 of water, and the RO methods needs about 4 kWh since extra energy (3 kWh) is required to operate pumps and other facilities in a plant. In general, membrane processes need less energy than thermal processes since there is no phase change in the separation processes and do not damage heat-sensitive biotechnology products. While both RO and NF membranes are permeable to water, RO membrane retains NaCI molecules and NF membrane is permeable to NaCI molecules, which is useful to remove inorganic salts from the products. Unlike thermal processes, the application of the membrane processes is limited by high osmotic pressure as the product solution is enriched by removing water. Chang et al. (2013) proposed a concept of osmotic pressure-free reverse osmosis (△∏=0=0 RO) that overcomes this limitation and allows concentration of any solution with high osmotic pressure to its saturation point and further to crystal form. △∏=0=0 RO, a two-component system, is distinct from 3-component forward osmosis and does not require the third component (draw component or extraction solvent) that must be separated from the aqueous solution at the end. This presentation will compare (1) ways of △∏=0 RO technologies in desalination, and, furthermore (2) dewatering and desalination of high osmotic solutions of NaCI (343 bar), volatile fatty acids (400 - 600 bar), and fuel ethanol (6000 bar) with thermal separation methods in terms of energy consumption and potential of △∏=0 RO technology.
机译:通过在水溶液中进行微生物原核细胞发酵来生产多样化的生物技术产品。为了使产物富集成浓缩溶液或固体形式(例如晶体),不可避免地要除去水。对于热法,去除1立方米水的理论最小能量为716 kWh,对于反渗透(RO),则为1 kWh。实际上,配备有热能回收利用的热方法需要大约25 kWh才能除去1立方米的水,而RO方法需要约4 kWh,因为需要额外的能量(3 kWh)来操作工厂中的泵和其他设施。通常,膜工艺比热工艺所需的能量更少,因为分离工艺中不会发生相变,并且不会损坏热敏性生物技术产品。虽然RO和NF膜均可透过水,但RO膜可保留NaCl分子,而NF膜可透过NaCl分子,这对于从产品中去除无机盐很有用。与热过程不同,膜过程的应用受到高渗透压的限制,因为产品溶液通过除去水而富集。 Chang等。 (2013年)提出了一种无渗透压的反渗透概念(△∏ = 0 = 0 RO),该概念克服了这一局限性,并允许将任何具有高渗透压的溶液浓缩至其饱和点并进一步结晶。 △∏ = 0 = 0 RO,一种两组分体系,不同于三组分正渗透,不需要最后必须与水溶液分离的第三组分(抽提组分或萃取溶剂)。本演讲将比较(1)脱盐过程中△∏ = 0 RO技术的方式,以及(2)NaCl(343 bar),挥发性脂肪酸(400-600 bar)和燃料的高渗透溶液的脱水和脱盐乙醇(6000 bar)采用热分离方法,在能耗和潜力方面均达到△∏ = 0 RO技术。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号