首页> 外文会议>Conference on nonstoichiometric compounds >STRUCTURE-CONDUCTIVITY RELATION IN OXYGEN ION CONDUCTORS: DOPED CERIA AND LA-MELILITES
【24h】

STRUCTURE-CONDUCTIVITY RELATION IN OXYGEN ION CONDUCTORS: DOPED CERIA AND LA-MELILITES

机译:氧离子导体中的结构-电导率关系:掺杂的铈土和镧系沸石

获取原文

摘要

Oxygen ion conductors are fundamental materials for various electrochemical applications such as solid oxide fuel cells. On the microscopic level, the transport of individual ions is determined by the migration barriers and the interactions between defects, which depend on the structure of the material and the response to local disorder. Density functional theory (DFT) calculations allow the study of both structures and defect energies. In this paper, the relation between structural details and defect energies is investigated on the basis of two examples: The effect of strain on vacancy migration and interaction in biaxially strained, doped ceria and the structural distortions during interstitialcy migration in melilite structured La_(1+x)Sr_(1-x)Ga_3O_(7+x/2). The migration barriers and interactions in ceria with small (Lu~(3+)), medium sized (Gd~(3+)) or large (La~(3+)) dopant ions are calculated for different strain states. Results show that the migration energies are affected by both the strain and the ionic radius of the cations along the migration path, which can be combined in a critical radius model. The interactions between vacancies and dopants are primarily determined by the dopant radius with an additional contribution due to the applied strain that cannot be explained by simple electrostatic interactions. In the melilites the site energies and migration barriers of oxygen interstitials depend on the occupation of surrounding cation sites by La~(3+) and Sr~(2+) ions. Calculations show an increasing stability of the interstitials with increasing number of La~(3+) ions. The transport of interstitial ions by an interstitialcy mechanism in the a/b-plane is facilitated by the flexible framework of corner-shared GaO_4 units and the relaxation of the GaO_4 tetrahedrons allow migration barriers of 0.15 eV and below. The DFT derived energies are applied in Kinetic Monte Carlo simulations to obtain the ionic conductivity, thus relating the microscopic processes with the macroscopic transport properties.
机译:氧离子导体是用于各种电化学应用(例如固体氧化物燃料电池)的基本材料。在微观层面上,各个离子的迁移取决于迁移壁垒和缺陷之间的相互作用,这取决于材料的结构和对局部无序的响应。密度泛函理论(DFT)的计算可以研究结构和缺陷能。本文基于两个例子研究了结构细节与缺陷能之间的关系:应变对双相应变掺杂二氧化铈中空位迁移和相互作用的影响以及在莫来石结构的La_(1+)的间隙迁移中的结构变形x)Sr_(1-x)Ga_3O_(7 + x / 2)。计算了不同应变状态下二氧化铈与小(Lu〜(3+)),中型(Gd〜(3+))或大(La〜(3+))掺杂离子的迁移势垒和相互作用。结果表明,迁移能受沿着迁移路径的阳离子的应变和离子半径的影响,可以结合在临界半径模型中。空位与掺杂剂之间的相互作用主要由掺杂剂半径决定,由于所施加的应变,附加的贡献无法用简单的静电相互作用来解释。在橄榄岩中,氧间隙的位能和迁移势垒取决于La〜(3+)和Sr〜(2+)离子对周围阳离子位点的占据。计算表明,随着La〜(3+)离子数量的增加,间隙的稳定性也随之增加。角共享的GaO_4单元的灵活框架有助于通过间隙机制在a / b平面中运输间隙离子,并且GaO_4四面体的弛豫允许0.15 eV及以下的迁移势垒。 DFT衍生的能量应用于动力学蒙特卡洛模拟中,以获得离子电导率,从而将微观过程与宏观传输性质相关联。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号