首页> 外文会议>Conference on multiphoton microscopy in the biomedical sciences >Improvement of two-photon microscopic imaging in deep regions of living mouse brains by utilizing a light source based on an electrically controllable gain-switched laser diode
【24h】

Improvement of two-photon microscopic imaging in deep regions of living mouse brains by utilizing a light source based on an electrically controllable gain-switched laser diode

机译:通过使用基于电可控增益切换激光二极管的光源,改善活体小鼠大脑深部区域的双光子显微成像

获取原文

摘要

In vivo two-photon microscopy is an advantageous technique for observing living mouse brains at high spatial resolutions. We previously used a 1064 nm high-power light source based on an electrically controllable gain-switched laser diode (maximum power: 4 W, repetition rate: 10 MHz, pulse width: 7.5 picoseconds) and successfully visualized EYFP expressing neurons at deeper regions in H-line mouse brains under living conditions. However, severe damages were frequently observed when the laser power after the objective lens was over 600 mW, suggesting that a higher average power might not be suitable for visualizing neural structures and functions at deep regions. To increase fluorescent signals as a strategy to avoid such invasions, here, we evaluated the effects of the excitation laser parameters such as the repetition rate (5-10 MHz), or the peak power, at the moderate average powers (10 - 500 mW), by taking the advantage that this electrically controllable light source could be used to change the repetition rate independently from the average power or the pulse width. The fluorescent signals of EYFP at layer V of the cerebral cortex were increased by approximately twofold when the repetition rate was decreased from 10 MHz to 5 MHz at the same average power. We also confirmed similar effects in the EYFP solution (335 μM) and fixed brain slices. These results suggest that in vivo two-photon microscopic imaging might be improved by increasing the peak power at the same average power while avoiding the severe damages in living brains.
机译:体内双光子显微镜技术是一种以高空间分辨率观察活着的小鼠大脑的有利技术。我们以前使用了基于电可控增益切换激光二极管(最大功率:4 W,重复频率:10 MHz,脉冲宽度:7.5皮秒)的1064 nm高功率光源,并成功地可视化了EYFP较深区域的神经元表达。生活条件下的H线小鼠大脑。但是,当物镜后的激光功率超过600 mW时,经常会看到严重的损坏,这表明较高的平均功率可能不适合可视化深部区域的神经结构和功能。为了增加荧光信号作为避免此类入侵的策略,在这里,我们在中等平均功率(10-500 mW)下评估了激励激光参数的影响,例如重复频率(5-10 MHz)或峰值功率通过利用这种电可控光源的优势,可以独立于平均功率或脉冲宽度来改变重复率。当以相同的平均功率将重复频率从10 MHz降低到5 MHz时,大脑皮质V层的EYFP荧光信号增加了大约两倍。我们还证实了在EYFP解决方案(335μM)和固定的脑切片中具有类似的作用。这些结果表明,通过在相同的平均功率下增加峰值功率,同时避免对活脑造成严重损害,可以改善体内双光子显微成像。

著录项

  • 来源
  • 会议地点 San Francisco(US)
  • 作者单位

    Research Institute for Electronic Science Hokkaido University Kita 20 Nishi 10 Kita-ku Sapporo Hokkaido Japan 001-0020 Graduate school of information science and technology Hokkaido University Kita 20 Nishi 10 Kita-ku Sapporo Hokkaido Japan 001-0020;

    Graduate school of information science and technology Hokkaido University Kita 20 Nishi 10 Kita-ku Sapporo Hokkaido Japan 001-0020 Core Research for Evolutional Science and Technology (CREST) Japan Science and Technology Agency (JST) Tokyo Japan;

    New Industry Creation Hatchery Center (NICHe) Tohoku University 6-6-10 Aramaki-Aoba Aoba-ku Sendai Miyagi Japan 980- 8579;

    Institute of Multidisciplinary Research for Advanced Materials Tohoku University Katahira 2-1-1 Aoba-ku Sendai Miyagi Japan 980-8577 Core Research for Evolutional Science and Technology (CREST) Japan Science and Technology Agency (JST) Tokyo Japan;

    Research Institute for Electronic Science Hokkaido University Kita 20 Nishi 10 Kita-ku Sapporo Hokkaido Japan 001-0020 Graduate school of information science and technology Hokkaido University Kita 20 Nishi 10 Kita-ku Sapporo Hokkaido Japan 001-0020 Core Research for Evolutional Science and Technology (CREST) Japan Science and Technology Agency (JST) Tokyo Japan;

    New Industry Creation Hatchery Center (NICHe) Tohoku University 6-6-10 Aramaki-Aoba Aoba-ku Sendai Miyagi Japan 980- 8579 Core Research for Evolutional Science and Technology (CREST) Japan Science and Technology Agency (JST) Tokyo Japan;

  • 会议组织
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

    two-photon microscopy; in vivo imaging; living mouse brain; repetition rate; peak power;

    机译:双光子显微镜体内成像;活老鼠脑重复率峰值功率;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号