首页> 外文会议>Conference on Lasers and Electro-Optics Europe;European Quantum Electronics Conference >Realization of multidimensional einstein-podolsky-rosen paradox between single photon and atomic spin-wave excitation
【24h】

Realization of multidimensional einstein-podolsky-rosen paradox between single photon and atomic spin-wave excitation

机译:单光子与原子自旋波激发之间的多维爱因斯坦-波多尔斯基-罗森悖论的实现

获取原文

摘要

Summary form only given. With the rapid development of spatially-resolving single-photon detectors, spatially structured multidimensional entangled states start to play a key role in modern quantum science. In particular, they find extensive applications in emerging fields such as quantum imaging, holography, computation or quantum-enhanced metrology. Moreover, spatially-multiplexed schemes hold a promise to increase the capacity of quantum channels, essential for quantum key distribution. An appealing perspective is to apply these ideas to light-atom interfaces, that are capable of storing and processing continuous-variable (CV) entanglement, critical for novel quantum cryptography, computation and imaging schemes.Here we generate a hybrid bipartite entangled state of a photon and an atomic spin-wave excitation [1], exhibiting Einstein-Podolsky-Rosen (EPR) correlations in real space of continuous position-momentum variables, as in the original EPR proposal [2]. We verify the entanglement by measuring the coincidence patterns corresponding to modulus-squared spatial wavefunctions of the state. By studying temporal evolution and decoherence we find that the EPR entanglement may be stored for several microseconds. Our approach turns out to be by far more robust than the only hitherto performed experiment, based on quadratures of squeezed light and a slow-light medium, where time-delayed EPR correlations were demonstrated [3]. We achieve two orders of magnitude longer delay time using quantum memory setup and significantly stronger violation of EPR inequality [4], with product of variances 3 times below the EPR bound for the full two-dimensional coincidence distribution.
机译:仅提供摘要表格。随着空间分辨单光子探测器的迅速发展,空间结构的多维纠缠态开始在现代量子科学中发挥关键作用。特别是,它们在新兴领域(例如量子成像,全息术,计算或量子增强的计量学)中得到了广泛的应用。此外,空间复用方案有望增加量子通道的容量,这对于量子密钥分发至关重要。一个吸引人的观点是将这些思想应用于轻原子接口,该接口能够存储和处理连续变量(CV)纠缠,这对于新颖的量子密码学,计算和成像方案至关重要。光子和原子自旋波激发[1],与原始的EPR建议[2]一样,在真实空间中表现出连续位置动量变量的爱因斯坦-波多尔斯基-罗森(EPR)相关性。我们通过测量与状态的模量平方空间波函数相对应的重合模式来验证纠缠。通过研究时间演变和退相干,我们发现EPR纠缠可以存储几微秒。基于压缩光和慢光介质的正交,证明了时延EPR相关性[3],我们的方法比迄今为止唯一执行过的实验更加可靠。我们使用量子存储器设置实现了两个数量级的更长延迟时间,并且显着更强地违反了EPR不等式[4],对于完整的二维重合分布,其乘积比EPR界线低3倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号