【24h】

Large-area grown MoS

机译:大面积种植的MoS

获取原文

摘要

Summary form only given. Monolayer Transition Metal Dichalcogenides (TMDs) have recently attracted great interest in the field of photonics because of their distinctive optical and spin properties. In contrast to bulk TMD materials, which are indirect bandgap semiconductors, monolayer TMDs are highly optically active due to a direct bandgap ranging between 1 and 2 eV [1]. The coupling of TMD excitons to optical fields can be dramatically enhanced by integration with nanophotonic resonators. For instance, enhanced light extraction, signatures of Purcell enhanced emission and even lasing in coupled systems of TMD monolayers transferred onto two-dimensional GaP-based photonic crystal cavities (PCCs) [2,3] as well as microdisk cavities [4] was reported.Here, we demonstrate the integration of chemical vapour deposition (CVD)-grown [5] molybdenum disulphide (MoS2) in one-dimensional, ladder-type PCC patterned in 200 nm thick free-standing SiO2 membranes [6]. For this cavity design, a parabolic modulation of the periodicity confines optical modes in the center of the ladder. These structures were fabricated by conventional electron beam lithography and reactive ion etching. A scanning electron microscope (SEM) image of a typical PCC (before release of the membrane) is shown as an inset in Fig. 1 (a). As shown in the photoluminescence (PL) spectrum in Fig 1 (a), the direct bandgap emission of MoS2 is decorated with three optical modes with quality (Q)-factors exceeding 1700. Figure 1 (b) demonstrates the measured spectral tuning of the different PCC modes (symbols) upon changing the crystal period from 265 nm to 340 nm. The gray lines show the resonance wavelength for membranes predicted by FDTD simulations for membrane thicknesses of d=300 nm (solid) and d=200 nm (dashed-dotted) nicely reproducing the measured data.
机译:仅提供摘要表格。由于其独特的光学和自旋特性,单层过渡金属双硫属化物(TMD)最近在光子学领域引起了极大的兴趣。与作为间接带隙半导体的块状TMD材料相比,单层TMD由于在1至2 eV之间的直接带隙而具有很高的光学活性[1]。通过与纳米光子谐振器集成,可以显着增强TMD激子与光场的耦合。例如,据报道,在转移到二维GaP基光子晶体腔(PCC)[2,3]以及微盘腔[4]的TMD单层耦合系统中,增强的光提取,赛尔信号增强了发射,甚至产生激光。在这里,我们展示了在200 nm厚的自立SiO2膜上构图的一维梯形PCC中化学气相沉积(CVD)生长的[5]二硫化钼(MoS2)的集成[6]。对于这种腔体设计,周期性的抛物线调制将光学模式限制在梯子的中心。这些结构是通过常规电子束光刻和反应离子刻蚀制造的。典型PCC的扫描电子显微镜(SEM)图像(在膜释放之前)在图1(a)中显示为插图。如图1(a)的光致发光(PL)光谱所示,MoS2的直接带隙发射由质量(Q)因子超过1700的三种光学模式修饰。图1(b)展示了测得的MoS2光谱调谐将晶振周期从265 nm更改为340 nm时,将使用不同的PCC模式(符号)。灰线显示了通过FDTD模拟预测的膜的共振波长,其中d = 300 nm(实心)和d = 200 nm(虚线)的膜厚度很好地再现了测量数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号