首页> 外文会议>Conference on Lasers and Electro-Optics Europe;European Quantum Electronics Conference >Long-coherence-time qubit memory: Combining an efficient light-atom interface and low-decoherence atomic states
【24h】

Long-coherence-time qubit memory: Combining an efficient light-atom interface and low-decoherence atomic states

机译:长相干时间量子位存储器:结合有效的光原子界面和低退相干原子态

获取原文

摘要

Summary form only given. Long-term storage of quantum information is a long standing goal since decades. It is particularly motivated by the fact that quantum network implementations strongly rely on quantum memories for light [1]. Long storage time and high efficiency are the main two figures of merit for a qubit memory. However, although quantum memories have been implemented in a large variety of physical systems, it turns out to be challenging to simultaneously fulfill those two main requirements.In our setup, a single 87Rb atom is trapped in a two-dimensional optical lattice inside a high-finesse cavity. Based on seminal work [2], the photonic polarization qubit a|L) + ß|R) described in the left/right polarization basis is mapped onto the atomic state |F = 2,= -1) + ß|F = 2, mf = +1) via a stimulated Raman adiabatic passage (STIRAP) as depicted in step I) of Fig. 1: The readout efficiency of this quantum memory protocol is basically constant for our typical coherence time. This is in contrast to systems based on atomic ensemble where decoherence affects the collective excitation reemission. However, fluctuations of the magnetic field deteriorate the coherence of the superposition. Indeed, the two levels we use are split by the Zeeman effect and thus the free evolution of the system will accumulate a random phase increasing with time. Typically, the coherence information of the qubit is lost after 200μs.
机译:仅提供摘要表格。几十年来,长期存储量子信息是一个长期的目标。量子网络的实现强烈依赖于光的量子存储器[1]。长时间存储和高效率是qubit存储器的两个主要优点。然而,尽管量子存储器已经在各种各样的物理系统中实现,但要同时满足这两个主要要求却极具挑战性。在我们的设置中,单个87Rb原子被俘获在高原子内部的二维光学晶格中精腔。基于开功[2],将以左/右偏振为基础描述的光子偏振量子位a | L)+ß| R)映射到原子状态| F = 2,= -1)+ß| F = 2 ,mf = +1),如图1的步骤I)所示,通过受激拉曼绝热通道(STIRAP)。该量子存储协议的读出效率对于我们的典型相干时间基本上是恒定的。这与基于原子集合的系统相反,在该系统中,退相干影响集体激发的重新发射。但是,磁场的波动会使叠加的相干性恶化。实际上,我们使用的两个级别被塞曼效应分开,因此系统的自由演化将积累随时间增加的随机相位。通常,量子比特的相干信息会在200μs之后丢失。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号