首页> 外文会议>Multimodal Biomedical Imaging XIV >Robust reconstruction of fluorescence molecular tomography based on a two-stage matching pursuit method for in vivo orthotopic hepatocellular carcinoma xenograft mouse model
【24h】

Robust reconstruction of fluorescence molecular tomography based on a two-stage matching pursuit method for in vivo orthotopic hepatocellular carcinoma xenograft mouse model

机译:基于两阶段匹配追踪方法的体内原位肝细胞癌异种移植小鼠模型的稳健重建荧光分子层析成像

获取原文
获取原文并翻译 | 示例

摘要

As a promising tomographic method in preclinical research, fluorescence molecular tomography (FMT) can obtainreal-time three-dimensional (3D) visualization for in vivo studies. However, because of the ill-posed nature and sensitivityto noise of the inverse problem, it remains challenging for effective and robust reconstruction of fluorescent probedistribution in animals. In this study, we present a two-stage matching pursuit (TSMP) method. The iterative process isdivided into two processes: In the first stage, we iterate several times using the OMP algorithm to improve the accuracy ofthe support set, which is because most of the atoms selected by the OMP algorithm are accurate. In the second stage, we useCoSaMP algorithm to iterative. The initial input of the second stage is the residual and atom obtained by the first stageOMP algorithm, which can change the dependence of CoSaMP to sparsity. Meanwhile, considering the time ofreconstruction, we set the iterative times of the first stage to K/2 (K is the sparisty). Because of the accuracy of the initialoutput and the choice of atomic criteria, the proposed algorithm has better performance than OMP and CoSaMP algorithm.The result of numerical simulation show that TSMP method can not only achieves accurate and desirable fluorescentsource reconstruction, but also demonstrates enhanced robustness to noise.
机译:作为临床前研究中一种有前途的层析成像方法,荧光分子层析成像(FMT)可以在体内研究中获得实时三维(3D)可视化效果。然而,由于反问题的不适性和对噪声的敏感性,对于有效且鲁棒地重建荧光探针在动物中的分布仍然具有挑战性。在这项研究中,我们提出了一种两阶段匹配追踪(TSMP)方法。迭代过程分为两个过程:在第一阶段,我们使用OMP算法进行多次迭代以提高支持集的准确性,这是因为OMP算法选择的大多数原子都是准确。在第二阶段,我们使用\ r \ nCoSaMP算法进行迭代。第二阶段的初始输入是第一阶段的\ r \ nOMP算法获得的残差和原子,这可以改变CoSaMP对稀疏性的依赖性。同时,考虑到重建的时间,我们将第一阶段的迭代时间设置为K / 2(K是空间)。由于初始\ r \ n输出的准确性和原子准则的选择,所提算法比OMP和CoSaMP算法具有更好的性能。\ r \ n数值仿真结果表明,TSMP方法不仅可以实现准确而理想的荧光\ r \ n资源重建,但也显示出增强的抗噪声能力。

著录项

  • 来源
    《Multimodal Biomedical Imaging XIV》|2019年|108711C.1-108711C.7|共7页
  • 会议地点 1605-7422;2410-9045
  • 作者

    Lin Yin; Kun Wang; Jie Tian;

  • 作者单位

    Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, No. 95 Zhongguancun East Road, Haidian District, Beijing 100190, China University of Chinese Academy of Science, Beijing 100080, China;

    Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, No. 95 Zhongguancun East Road, Haidian District, Beijing 100190, China University of Chinese Academy of Science, Beijing 100080, China;

    Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, No. 95 Zhongguancun East Road, Haidian District, Beijing 100190, China University of Chinese Academy of Science, Beijing 100080, China tian@ieee.org;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号