首页> 外文会议>Biofabrication for hierarchical in vitro tissue models >LASER-BASED 3D PRINTING OF HYDROGEL BARRIER MODELS FOR MICROFLUDIC APPLICATIONS
【24h】

LASER-BASED 3D PRINTING OF HYDROGEL BARRIER MODELS FOR MICROFLUDIC APPLICATIONS

机译:基于激光的微流体应用水障壁模型3D打印

获取原文
获取原文并翻译 | 示例

摘要

The placenta secures the survival and development of the fetus. As placental tissue connects the fetus with the mother and is responsible for endogenous and exogenous material transfer. The maternal and fetal blood are thereby separated, by the so-called placental barrier, which is made up by the trophoblastic syncytium and the fetal capillary wall. Research in the field of placenta biology represents a challenging topic, as current approaches are difficult to perform, time consuming and often carry the risk of harming the fetus. The establishment of a reproducible in-vitro model, simulating the placental transport is necessary to study fetal development and for identification of underlying causes of maldevelopment. In this study, a photosensitive hydrogel material, in combination with two-photon polymerisation, was used to produce high resolution structures with nanometre precision geometries. Gelatine modified with methacrylamide and amino-ethyl-methacrylate (GelMOD AEMA) was thereby crosslinked within a customised microfluidic-device under the addition of photoinitiator, separating the chip in two different compartments (Figure 1). The fetal compartment contains HUVEC cells which are cultivated in EGM2, while BeWo B30 cells are supplied with DMEM Ham-F12 to mimic the maternal compartment. This microfluidic approach in combination with native flow profiles can be used to precisely remodel the microenvironment of placental tissue. The establishment of a functional placenta-on-a-chip-model allows the modulation of different clinical and biological scenarios in the future. A potential application can be found in the simulation of altered sugar transport across the placental membrane and evaluation of the effects of altered nutrient balance in-utero.
机译:胎盘可确保胎儿的生存和发育。由于胎盘组织将胎儿与母亲连接起来,并负责内源性和外源性物质的转移。因此,母血和胎儿血被所谓的胎盘屏障隔开,该屏障由滋养细胞合胞体和胎儿毛细血管壁组成。胎盘生物学领域的研究代表了一个具有挑战性的主题,因为当前的方法难以执行,耗时且经常带有伤害胎儿的风险。建立可重现的体外模型,模拟胎盘运输,对于研究胎儿发育和识别发育不良的根本原因非常必要。在这项研究中,光敏水凝胶材料与双光子聚合相结合,被用于生产具有纳米精度几何形状的高分辨率结构。因此,在添加光引发剂的情况下,在定制的微流控设备中将用甲基丙烯酰胺和甲基丙烯酸氨基乙酯改性的明胶交联,将芯片分成两个不同的隔室(图1)。胎儿区室包含在EGM2中培养的HUVEC细胞,而BeWo B30细胞则配有DMEM Ham-F12以模仿母体区室。这种微流体方法与天然血流曲线相结合可用于精确重塑胎盘组织的微环境。功能性胎盘芯片模型的建立允许将来调节不同的临床和生物学情况。在模拟糖穿过胎盘膜的运输变化以及评估子宫内营养平衡变化的影响时,可以发现潜在的应用。

著录项

  • 来源
  • 会议地点 Hernstein(AT)
  • 作者单位

    Institute of Materials Science and Technology, Vienna University of Technology, Austria;

    Institute of Materials Science and Technology, Vienna University of Technology, Austria;

    Institute of Materials Science and Technology, Vienna University of Technology, Austria;

    Institute of Applied Synthetic Chemistry, Vienna University of Technology, Austria;

    Institute of Applied Synthetic Chemistry, Vienna University of Technology, Austria;

    Institute of Applied Synthetic Chemistry, Vienna University of Technology, Austria;

    Polymer Chemistry and Biomaterials Research Group, Ghent University, Belgium;

    Polymer Chemistry and Biomaterials Research Group, Ghent University, Belgium Sandra;

    Polymer Chemistry and Biomaterials Research Group, Ghent University, Belgium;

    Institute of Applied Synthetic Chemistry, Vienna University of Technology, Austria;

    Institute of Applied Synthetic Chemistry, Vienna University of Technology, Austria;

    Institute of Materials Science and Technology, Vienna University of Technology, Austria;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    two-photon polymerization; GelMOD; microfluidic; barrier model; placenta;

    机译:双光子聚合; GelMOD;微流体障碍模型胎盘;
  • 入库时间 2022-08-26 14:30:56

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号