首页> 外文会议>Berkeley Symposium on Energy Efficient Electronic Systems and Steep Transistors Workshop >Gate tunable transport-gap to beat the Boltzmann limit: A graphene klein tunnel field effect transistor
【24h】

Gate tunable transport-gap to beat the Boltzmann limit: A graphene klein tunnel field effect transistor

机译:门可调传输间隙超过玻耳兹曼极限:石墨烯克莱因隧道场效应晶体管

获取原文
获取外文期刊封面目录资料

摘要

T ln 10/q ~ 60 mV/decade) is fundamentally limited by the tail of the Fermi-Dirac distribution of electrons in the contacts. To overcome this limit, new devices have emerged utilizing novel physical mechanisms such as - Tunnel FETs that abruptly open a tunneling channel in a p-i-n junction [1], negative capacitance based MOSFETs [2] that amplify voltage division across a regular oxide in series with a ferroelectric near transition, metal-to-insulator transition hyperFETs [3] that use opening of a Mott bandgap for voltage amplification at the source, NEMFETs that abruptly withdraw the channel from the drain end [4] and electrostrictive FET [5] that opens a physical gap with a piezoelectric field. All of these systems rely on depletion physics in addition to a gate enhancement of the transmission modes in the channel, except negative capacitance and hyperFETs where the enhancement happens externally at the voltage input. In this paper, we will argue how angular filtering in pristine graphene can produce a tunable transport-gap [6,7] which can in principle beat the Boltzmann limit over several decades while preserving its high mean-free path. We also discuss geometrical non-idealities as well as applications like RF devices that can still survive these non-idealities.
机译:T ln 10 / q〜60 mV /十倍)基本上受触点中电子的费米-狄拉克分布尾部限制。为了克服这个限制,利用新的物理机制出现了新的器件,例如-隧道FET突然打开了引脚结[1]中的隧道通道,基于负电容的MOSFET [2]放大了与常规氧化物串联的分压。铁电近过渡,金属到绝缘体的过渡hyperFET [3],其使用Mott带隙的开口在源极处进行电压放大; NEMFET突然从漏极端撤回沟道[4],而电致伸缩FET [5]打开带有压电场的物理间隙。除了负电容和hyperFET以外,所有这些系统除了栅极增强通道中传输模式的栅极以外,还依赖于耗尽物理,其中增强发生在电压输入的外部。在本文中,我们将争论原始石墨烯中的角度过滤如何产生可调节的传输间隙[6,7],在原则上可以超过玻耳兹曼极限数十年,同时保持其高平均自由程。我们还将讨论几何非理想情况以及RF设备等仍可以在这些非理想情况下幸存的应用程序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号