首页> 外文会议>xEV battery technology, application amp; market 2019 >Sintering Processes for Industrial Relevant Glass-Ceramic Electrolyte for All-Solid-State Batteries
【24h】

Sintering Processes for Industrial Relevant Glass-Ceramic Electrolyte for All-Solid-State Batteries

机译:工业用全固态电池用玻璃陶瓷电解质的烧结工艺

获取原文
获取原文并翻译 | 示例

摘要

State-of-the-art lithium ion batteries have limited optimization potential in terms of energy and power density. Furthermore, flammable liquid electrolytes will always be a significant risk within high performance applications like automotive. The most promising solution to overcome these limitations are all-solid-state batteries. Electrolytes enabling all-solid-state batteries can be divided into organic and inorganic, the latter into sulfidic, nitridic and oxidic materials. Oxidic solid electrolytes distinguish themselves with regard to large electrochemical windows, sufficiently high conductivities and the low interface resistances against lithium metal. At SCHOTT, oxidic glass-ceramic particles have the potential to be produced at an industrial scale and are already available on a kilogram-scale. Present challenges are the incorporation of solid electrolytes into the cell as a separator as well as in the combination with different cathode materials as a cathode composite. Two mean concepts exist to overcome such challenges: One is to combine the hard particles with a soft polymer to improve flexibility and wettability while enhancing conductivity and battery performance. Another one is to sinter the electrolytes by themselves or in the presence of cathode materials enabling good contact and therefrom low interface resistances between the particles as well as highest safety due to the realization of highly dense battery components. In this contribution we will report latest improvements on sintering of glass-ceramic electrolytes. The influence of particle size distribution and microstructure on sintering times are investigated. Especially enhanced density, conductivity and reduced sintering temperature compared with classical ceramic sintering routes will be highlighted. Our results indicate that oxidic glass-ceramic electrolytes are suitable materials enabling all-solid-state batteries.
机译:就能量和功率密度而言,最先进的锂离子电池具有有限的优化潜力。此外,在汽车等高性能应用中,易燃液体电解质将始终是重大风险。克服这些限制的最有希望的解决方案是全固态电池。支持全固态电池的电解质可分为有机和无机材料,后者可分为硫化,氮化和氧化材料。氧化性固体电解质在较大的电化学窗口,足够高的电导率和对锂金属的低界面电阻方面与众不同。在肖特,氧化玻璃陶瓷颗粒具有以工业规模生产的潜力,并且已经以千克规模出售。当前的挑战是将固体电解质作为隔膜引入电池,以及与不同的阴极材料结合作为阴极复合材料。存在两种克服这些挑战的方法:一种是将硬质颗粒与一种软质聚合物结合使用,以提高柔韧性和可湿性,同时提高电导率和电池性能。另一种方法是自行烧结电解质或在存在阴极材料的情况下进行烧结,从而实现良好的接触,并由此实现颗粒之间的低界面电阻,以及由于实现了高密度的电池组件而具有最高的安全性。在这项贡献中,我们将报告玻璃陶瓷电解质烧结的最新进展。研究了粒度分布和微观结构对烧结时间的影响。与传统的陶瓷烧结路线相比,将特别强调提高密度,导电率和降低烧结温度。我们的结果表明,氧化玻璃陶瓷电解质是适用于全固态电池的合适材料。

著录项

  • 来源
  • 会议地点 Strasbourg(FR)
  • 作者单位

    Technical University Braunschweig, Institute for Particle Technology, Volkmaroderstrasse 5, Braunschweig, D-38104 Germany;

    Schott AG, Hattenbergstrasse 10, Mainz, D-55122 Germany,Technical University Braunschweig, Institute for Particle Technology, Volkmaroderstrasse 5, Braunschweig, D-38104 Germany;

    Schott AG, Hattenbergstrasse 10, Mainz, D-55122 Germany;

    Schott AG, Hattenbergstrasse 10, Mainz, D-55122 Germany;

    Schott AG, Hattenbergstrasse 10, Mainz, D-55122 Germany;

    Schott AG, Hattenbergstrasse 10, Mainz, D-55122 Germany;

    Technical University Braunschweig, Institute for Particle Technology, Volkmaroderstrasse 5, Braunschweig, D-38104 Germany;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号