首页> 外文会议>xEV battery technology, application amp; market 2019 >Concept for a Hybrid Performance- and Data-Based Model for State of Health Monitoring and Aging Prediction of Li-Ion Battery Packs
【24h】

Concept for a Hybrid Performance- and Data-Based Model for State of Health Monitoring and Aging Prediction of Li-Ion Battery Packs

机译:锂离子电池组健康状况监测和老化预测的基于性能和数据的混合模型的概念

获取原文
获取原文并翻译 | 示例

摘要

In the past, several aging models for li-ion batteries have been provided in literature. Many of them can be divided into either performance-based or data-based approaches. Both model domains have their specific strength and weaknesses, whereby most of them are complementary. To capture all relevant aging stress factors, development of performance-based models is very time-consuming and resource-intensive. Furthermore, they are parameterized on cell-level and do not display statistically induced aging scattering on system-level, wherefore their accuracy decreases during vehicle usage. The main drawback of data-based approaches is the necessity of a huge amount of data in order to display all relevant aging regimes in the training data and gain high accuracy. However, the high potential accuracy itself increases during continuous learning along the batteries lifetime. Still, if specific aging mechanisms occur towards the batteries end of life, which have not been observed in the training data, the black-box approach may fail to detect them. To overcome the deficiencies in state of the art aging modeling, the authors propose a new hybrid performance-and data-based approach for state of health monitoring and aging prediction of li-ion battery packs. The approach consists of several algorithms, which partly run onboard on a telematics unit and online on a server infrastructure. The concept is based on previous work by Baumann et al.. Onboard, the telematics unit receives data from the battery management system (BMS) and runs capacity and impedance estimation algorithms. Furthermore, the time-continuous data from the BMS needs to be aggregated to a reasonable data size, which can be transferred to the server. This is done by load spectrum analysis. Regarding the choice of the resolution of stress factor-classes, a trade-off between data-size and modeling accuracy has to be found. Therefore, the authors propose a variable class resolution based on areas with similar aging behavior, which are extracted by literature and own aging experiments. On the server side, an equivalent circuit model of the whole battery pack is regularly updated with the estimated parameters. The pack model considers parameter variations especially inside a parallel connection, which cannot be directly measured by the BMS and scales system behavior onto cell-level. Load spectrum analysis can then be performed on cell-level, before the aging relevant data is fed into the hybrid aging model. The hybrid aging model has three specific goals: 1) Prediction of the pack's available energy and power capability (in terms of capacity and resistance). This is done by interaction of an empirical aging model with a data-based regression algorithm. Prior estimated parameters serve as training data, whereby the probabilistic nature of the data is taken into account. 2) Detection of specific severe aging mechanisms, such as lithium plating, which will lead to fast battery degradation in the upcoming cycles. 3 ) Analysis of the pack's usage and occurring stress factors. This knowledge is needed as input to predict the further aging behavior based on the real usage profile. Hence, battery management functions could be adjusted in order to prolong the batteries lifetime.
机译:过去,文献中已经提供了几种锂离子电池的老化模型。它们中的许多可以分为基于性能的方法或基于数据的方法。这两个模型域都有其特定的优势和劣势,因此它们大多数是互补的。为了捕获所有相关的老化压力因素,基于性能的模型的开发非常耗时且占用大量资源。此外,它们在单元级别上被参数化,并且在系统级别上不显示统计上引起的老化散射,因此它们的准确性在车辆使用期间会降低。基于数据的方法的主要缺点是需要大量数据,以便在训练数据中显示所有相关的老化方案并获得高精度。然而,在沿电池寿命的连续学习过程中,高电位精度本身会增加。但是,如果特定的老化机制在电池寿命终止时出现,而在训练数据中却没有观察到,那么黑匣子方法可能无法检测到它们。为了克服现有技术中老化模型的不足,作者提出了一种新的基于性能和数据的混合方法,用于锂电池组的健康状态监测和老化预测。该方法由几种算法组成,这些算法部分地在车载信息处理单元上运行,并在服务器基础结构上在线运行。该概念基于Baumann等人的先前工作。车载信息处理单元从电池管理系统(BMS)接收数据,并运行容量和阻抗估计算法。此外,需要将来自BMS的时间连续数据聚合到合理的数据大小,然后再将其传输到服务器。这是通过负载谱分析完成的。关于应力因子类的分辨率的选择,必须在数据大小和建模精度之间找到权衡。因此,作者提出了一种基于具有相似老化行为的区域的可变类分辨率,这些区域是通过文献和自己的老化实验提取的。在服务器端,整个电池组的等效电路模型会定期使用估算的参数进行更新。包模型考虑了参数变化,尤其是在并行连接内部,而BMS无法直接测量这些参数变化,并将系统行为扩展到单元级别。然后,可以在老化相关数据输入到混合老化模型之前,在单元级别执行负载谱分析。混合老化模型具有三个具体目标:1)预测电池组的可用能量和功率能力(就容量和电阻而言)。这是通过将经验老化模型与基于数据的回归算法进行交互来完成的。先前估计的参数用作训练数据,从而考虑了数据的概率性质。 2)检测特定的严重老化机制,例如锂电镀,这将在即将到来的循环中导致电池快速退化。 3)分析包装的使用情况和出现的压力因素。需要此知识作为输入,以根据实际使用情况预测进一步的老化行为。因此,可以调整电池管理功能以延长电池寿命。

著录项

  • 来源
  • 会议地点 Strasbourg(FR)
  • 作者单位

    Technical University of Munich, Institute of Automotive Technology, Boltzmannstrasse 15, Garching bei Munchen, D-85748 Germany;

    TWAICE Technologies GmbH, Joseph-Dollinger-Bogen 26, Munich, D-80807 Germany;

    Technical University of Munich, Institute of Automotive Technology, Boltzmannstrasse 15, Garching bei Munchen, D-85748 Germany;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号