首页> 外文会议>xEV battery technology, application amp; market 2019 >Factors Influencing the Thermal Stability of Lithium Ion Batteries - From Active Materials to State-of-Charge and Degradation
【24h】

Factors Influencing the Thermal Stability of Lithium Ion Batteries - From Active Materials to State-of-Charge and Degradation

机译:影响锂离子电池热稳定性的因素-从活性材料到充电状态和降解

获取原文
获取原文并翻译 | 示例

摘要

High energy density, long cycle life and enhanced safety properties are considered key for future lithium ion batteries (LIBs). Therefore, it is of fundamental importance to investigate and understand the specific interdependencies between electrochemical performance, degradation effects and the influence on the safety properties of the cell. Considering the large variety of cell chemistries applied in state-of-the-art and future LIBs, each material exhibits different characteristics regarding the electrochemical performance and degradation during charge/discharge cycling. The impact of the degradation effects on the thermal stability, hence the safety properties of LIBs, is widely unknown. Therefore, this study presents fundamental correlations on how state-of-charge (SOC) and degradation effects can influence the thermal stability of specific positive and negative active materials. With regard to different positive active materials, this study focuses on LiNixCoyMnzO2 (NCM, x+y+z=1) materials with varying nickel contents (0.33 ≤ × ≤ 0.8). The electrodes were cycled in coin cells using the same carbonaceous counter electrode and electrolyte to provide a direct access to the evaluation of the influence of different nickel contents on the degradation and thermal stability. The investigations on the thermal stability were performed on electrode level and in presence of electrolyte in the charged and discharged state. Therein, thermogravimetric analysis (TGA) was combined with accelerating rate calorimetry (ARC) experiments in the heat-wait-search (HWS) mode and comprehensive post-mortem analysis of the electrodes after charge/discharge cycling. Thus, this study aims on extending the knowledge about the thermal stability of NCM materials which are known to be less stable, i.e. more prone to structural decomposition and oxygen release, in the delithiated state and beyond that, exhibit an intrinsically reduced thermal stability at higher nickel contents. Apart from the NCM materials, investigations on the high voltage spinel-type LiNi0.5Mn1.5O4 (LNMO) showed that the presence of nickel strongly affects the thermal stability, especially in the charged state. In addition to the different positive active materials, the thermal stability of negative electrodes were investigated in the charged and discharged state. In LIBs the thermally induced deintercalation of lithium from the graphitic host structure leads to the onset of exothermic reactions at elevated temperatures. Therein, the analysis of changes in the reactivity due to the presence of fresh or aged electrolyte can lead to a more detailed understanding of the influence of aging on the thermal stability of LIBs. Moreover, the influence of silicon on the thermal stability of Si/C composite electrodes for high-energy applications was evaluated by comparison with pure carbonaceous electrodes. Furthermore, despite the numerous advantages of Li4Ti5O12 (LTO) for high-power applications, the thermal stability of this active material and the influence on the overall safety properties of LIBs has been barely investigated, yet. In summary, an in-depth knowledge of the factors influencing the thermal stability of specific LIB components is essential to develop cells with superior energy density, cycle life, and most importantly enhanced safety properties.
机译:高能量密度,长循环寿命和增强的安全性被认为是未来锂离子电池(LIB)的关键。因此,研究和理解电化学性能,降解效果以及对电池安全性能的影响之间的特定相互依赖性至关重要。考虑到最新的和未来的LIB中使用的电池化学种类繁多,每种材料在充放电循环中的电化学性能和降解方面都表现出不同的特性。降解作用对热稳定性的影响,因此对LIB的安全性的影响是众所周知的。因此,本研究提出了电荷状态(SOC)和降解效应如何影响特定正极和负极活性材料的热稳定性的基本相关性。对于不同的正极活性物质,本研究集中于镍含量变化(0.33≤×≤0.8)的LiNixCoyMnzO2(NCM,x + y + z = 1)材料。使用相同的含碳对电极和电解质在纽扣电池中循环电极,以直接评估不同镍含量对降解和热稳定性的影响。关于热稳定性的研究是在电极水平上以及在充放电状态下存在电解质的情况下进行的。其中,在热等待搜索(HWS)模式下将热重分析(TGA)与加速量热(ARC)实验相结合,并对充放电循环后的电极进行全面的验尸分析。因此,本研究旨在扩展有关NCM材料的热稳定性的知识,这些材料在去石化状态下不稳定,即更易于发生结构分解和氧释放,并且在高温下表现出固有的热稳定性降低。镍含量。除NCM材料外,对高压尖晶石型LiNi0.5Mn1.5O4(LNMO)的研究表明,镍的存在强烈影响热稳定性,特别是在充电状态下。除了不同的正极活性物质以外,还研究了负极在充电和放电状态下的热稳定性。在LIB中,锂从石墨主体结构中的热诱导脱嵌导致在升高的温度下发生放热反应。其中,由于存在新鲜或老化的电解质而导致的反应性变化的分析可以导致对老化对LIBs热稳定性的影响的更详细的了解。此外,通过与纯碳质电极比较,评估了硅对高能应用Si / C复合电极热稳定性的影响。此外,尽管Li4Ti5O12(LTO)在高功率应用中具有众多优势,但这种活性材料的热稳定性以及对LIB整体安全性能的影响尚未得到研究。总之,深入了解影响特定LIB组件热稳定性的因素对于开发具有优异能量密度,循环寿命以及最重要的是增强安全性的电池至关重要。

著录项

  • 来源
  • 会议地点 Strasbourg(FR)
  • 作者单位

    University of Muenster, MEET Battery Research Center, Corrensstrasse 46, Muenster, D-48149 Germany;

    University of Muenster, MEET Battery Research Center, Corrensstrasse 46, Muenster, D-48149 Germany;

    University of Muenster, MEET Battery Research Center, Corrensstrasse 46, Muenster, D-48149 Germany;

    University of Muenster, MEET Battery Research Center, Corrensstrasse 46, Muenster, D-48149 Germany;

    University of Muenster, MEET Battery Research Center, Corrensstrasse 46, Muenster, D-48149 Germany;

    University of Muenster, MEET Battery Research Center, Corrensstrasse 46, Muenster, D-48149 Germany;

    University of Muenster, MEET Battery Research Center, Corrensstrasse 46, Muenster, D-48149 Germany,Helmholtz-Institute Muenster, (HI MS), IEK-12, Forschungszentrum Juelich GmbH, Corrensstrasse 46, Muenster, D-48149 Germany;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号