首页> 外文会议>Lithium battery chemistry symposium 2018 >Advanced Interface Characterization Using Surface Science Methods: Recent Insights for Interfaces in Liquid and Solid Electrolyte Based Cells
【24h】

Advanced Interface Characterization Using Surface Science Methods: Recent Insights for Interfaces in Liquid and Solid Electrolyte Based Cells

机译:使用表面科学方法进行高级界面表征:基于液体和固体电解质的电池中界面的最新见解

获取原文
获取原文并翻译 | 示例

摘要

The analysis of interface (SEI) layers in Li-ion batteries is a challenge both in the case of liquid- and solid electrolyte based cells. Their buried nature and high reactivity towards ambient atmosphere require strategies to access the layers with surface sensitive characterization methods and to analyze them in an unaltered state. An additional issue is the high compositional complexity of composite electrodes and their surface layers, which impairs the identification of the different phases and renders the deduction of reaction mechanisms difficult. In this contribution, we present our view on surface and interface layer formation in liquid and solid electrolyte cells as obtained from dedicated analysis by photoelectron spectroscopy. In our approach, we use reference spectra and analysis of thin film model electrodes in order to support the identification of the different phases and possible reaction schemes. Specifically, we present recent insights on the surface layer formation in liquid electrolyte composite cathodes as well as on the formation of solid electrolyte interfaces. Our studies on liquid electrolyte based LCO cathodes demonstrate that hydroxides may be formed in the near-surface region of cathodes, which we attribute to the presence of trace water in the electrolyte. Furthermore, our studies highlight the relevance of solvent reduction and catalytic processes for solvent decomposition at liquid electrolyte based cathodes. For solid electrolyte interfaces, we find reactive or non-reactive interfaces, depending on the material combination. Often, space charge layer formation is observed. Both for liquid and solid electrolyte systems, reactivity is strongly related to the presence of electronic interface states and/or the transfer of oxygen species, which must be eliminated to obtain stable interfaces.
机译:在基于液体和固体电解质的电池中,锂离子电池中界面(SEI)层的分析都是一个挑战。它们的埋藏性质和对周围大气的高反应性要求采取策略,以表面敏感的表征方法进入这些层,并以不变的状态对其进行分析。另一个问题是复合电极及其表面层的高成分复杂性,这损害了对不同相的识别并使得推论反应机理变得困难。在此贡献中,我们提出了对液体和固体电解质电池中表面和界面层形成的看法,这是通过光电子能谱的专门分析获得的。在我们的方法中,我们使用参考光谱和薄膜模型电极的分析,以支持不同相的识别和可能的反应方案。具体而言,我们介绍了有关液体电解质复合阴极中的表面层形成以及固体电解质界面形成的最新见解。我们对基于液态电解质的LCO阴极的研究表明,在阴极的近表面区域可能形成氢氧化物,这归因于电解质中存在微量水。此外,我们的研究突出了在液体电解质基阴极上溶剂还原和催化过程与溶剂分解的相关性。对于固体电解质界面,我们会根据材料组合找到反应性或非反应性界面。通常会观察到空间电荷层的形成。对于液体和固体电解质系统而言,反应性都与电子界面态的存在和/或氧物种的转移密切相关,必须消除这些才能获得稳定的界面。

著录项

  • 来源
  • 会议地点 Mainz(DE)
  • 作者单位

    Technical University of Darmstadt, Institute of Materials Science, Otto Berndt Strasse 3, Darmstadt, D-64287 Germany;

    Technical University of Darmstadt, Institute of Materials Science, Otto Berndt Strasse 3, Darmstadt, D-64287 Germany;

    Technical University of Darmstadt, Institute of Materials Science, Otto Berndt Strasse 3, Darmstadt, D-64287 Germany;

    Technical University of Darmstadt, Institute of Materials Science, Otto Berndt Strasse 3, Darmstadt, D-64287 Germany;

    Technical University of Darmstadt, Institute of Materials Science, Otto Berndt Strasse 3, Darmstadt, D-64287 Germany;

    Technical University of Darmstadt, Institute of Materials Science, Otto Berndt Strasse 3, Darmstadt, D-64287 Germany;

    Technical University of Darmstadt, Institute of Materials Science, Otto Berndt Strasse 3, Darmstadt, D-64287 Germany;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号