首页> 外文会议>Lithium battery chemistry symposium 2018 >Cylindrical Graphite/LiFeP04 Commercial Batteries Cycled at High Current Densities Study by Post Mortem Analysis
【24h】

Cylindrical Graphite/LiFeP04 Commercial Batteries Cycled at High Current Densities Study by Post Mortem Analysis

机译:圆柱石墨/ LiFePO4商业电池在高电流密度下循环的事后分析研究

获取原文
获取原文并翻译 | 示例

摘要

Lithium ion battery technology is today playing a key role in the development of high power and energy densities devices. To boost the quality of this technology, it is vital to gain a deeper understanding of the causes leading to the battery end of life and loose of performance. In fact, Li-ion battery manufacturers have to deal most of all with problems concerning the cells aging in order to ensure long-term reliability and safety. In this context, determination of degradation mechanisms and their correlation with cell performances is essential for the production of a new cell concept that can meet targeted lifetimes [1-3]. An evaluation of performances of Graphite/LiFeP04 commercial cylindrical batteries at high discharge current (6C) is discussed in this study. The combination of many temperature, charging C-rate and end-of-charge voltage are very important to define and understand the aging mechanism in cycled Li-ion cells. A study on the degradation mechanisms of the battery is realised by post-mortem analysis in order to identify the main degradation mechanisms following a well-defined protocol [4]. Systematic degradation mechanisms are evaluated by microstructural (SEM) and crystallographic (XRD) analyses. Elemental analysis of the electrode composition was determined by EDS and ICP techniques. The electrochemical performances of selected areas of the harvested electrodes were determined by galvanostatic testing in half-cell configuration and electrochemical impedance spectroscopy. The cell state of Health (SOH) evolution was evaluated with the capacity and the internal resistance, as a function of Full Equivalent Cycles (FEC). These results were combined with non-destructive cell electrochemical measurements to provide a global view of the main degradation processes.
机译:锂离子电池技术如今在高功率和高能量密度设备的开发中起着关键作用。为了提高这项技术的质量,对导致电池寿命终止和性能降低的原因的深入了解至关重要。实际上,锂离子电池制造商必须处理所有有关电池老化的问题,以确保长期的可靠性和安全性。在这种情况下,确定降解机制及其与电池性能的关系对于产生可以满足目标寿命的新电池概念至关重要[1-3]。本研究讨论了石墨/ LiFePO4商用圆柱电池在高放电电流(6C)下的性能评估。许多温度,充电C速率和充电终止电压的组合对于定义和理解循环锂离子电池的老化机理非常重要。通过事后分析,可以对电池的降解机理进行研究,以便根据明确定义的协议确定主要的降解机理[4]。通过微结构(SEM)和晶体学(XRD)分析评估了系统降解机理。电极组成的元素分析通过EDS和ICP技术确定。通过在半电池配置中的恒电流测试和电化学阻抗谱法确定收获电极的选定区域的电化学性能。用容量和内阻作为全等效循环(FEC)的函数评估健康(SOH)进化的细胞状态。这些结果与非破坏性电池电化学测量结果相结合,可提供主要降解过程的整体视图。

著录项

  • 来源
  • 会议地点 Mainz(DE)
  • 作者单位

    CIC EnergiGUNE, Arabako Teknologi Parkea, Albert Einstein 48, Milano, E-01510 Spain;

    CIC EnergiGUNE, Arabako Teknologi Parkea, Albert Einstein 48, Milano, E-01510 Spain;

    CIC EnergiGUNE, Arabako Teknologi Parkea, Albert Einstein 48, Milano, E-01510 Spain;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号