首页> 外文会议>Automotive Thermoplastic Polyolefins(TPO) Global Conference; 20051010-12; Sterling Heights,MI(US) >Characterization and Modeling of TPO Polymer Systems for Interior Energy Management Applications
【24h】

Characterization and Modeling of TPO Polymer Systems for Interior Energy Management Applications

机译:用于内部能源管理应用的TPO聚合物系统的表征和建模

获取原文
获取原文并翻译 | 示例

摘要

The increasing use of TPO materials in automotive energy management applications calls for better understanding of how to represent those materials in computational environments. Tools such as finite element analysis can provide good insight into deformation modes and areas of maximum stress and strain in an impact event, but cannot robustly predict actual force or deflection magnitudes or material failure for TPO's.rnAny material model used in a finite element analysis should first be correlated to a physical impact test which isolates the contribution of the material model only. This allows the engineer to then determine the level of confidence which is associated with use of that material model.rnInitial temperature has the single biggest effect on performance of TPO materials, followed by plastic strain rate Both factors are critical in predicting the performance of TPO materials, however, currently available constitutive models do not fully represent all key material responses in a single model Development of a viscoelastic-viscoplastic material model tailored for TPO's is required to better represent this class of materials.rnThere are several choices of test method for generation of material data inputs. The most common is tensile testing due to ease of the test, established international standards for low-rate testing, and reducing the data into characteristic values. Compression testing provides the ability to complete a truly constant strain rate test, but requires additional complexities when testing, particularly at high strain rates.rnAutomotive interior applications are well represented by data sets that cover plastic strain rate ranges up to 300/s While some specific applications or designs may contain higher strain rates, the general population of interior energy management applications will be covered by this range.
机译:TPO材料在汽车能源管理应用中的使用越来越广泛,这要求人们更好地了解如何在计算环境中表示这些材料。诸如有限元分析之类的工具可以很好地洞察撞击事件中的变形模式以及最大应力和应变的区域,但不能为TPO可靠地预测实际力或挠度或材料破坏。在有限元分析中使用的任何材料模型都应首先与物理冲击测试相关,该物理冲击测试仅隔离材料模型的贡献。这样,工程师就可以确定与该材料模型的使用相关的置信度。初始温度对TPO材料的性能具有最大的影响,其次是塑性应变率。这两个因素对于预测TPO材料的性能都是至关重要的但是,当前可用的本构模型不能完全代表一个模型中的所有关键材料响应。为更好地表示此类材料,需要开发针对TPO量身定制的粘弹-粘塑性材料模型。rn材料数据输入。最常见的是拉伸测试,因为它易于测试,为低速率测试建立了国际标准,并将数据缩减为特征值。压缩测试可以完成真正恒定的应变速率测试,但是在测试时尤其是在高应变速率下,还需要额外的复杂性。汽车内部应用程序可以很好地代表数据集,该数据集涵盖了高达300 / s的塑性应变率范围,尽管有些特定应用或设计中可能包含较高的应变率,因此该范围将覆盖室内能源管理应用的一般人群。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号