首页> 外文会议>Association in solution IV >MORPHOLOGIES IN VESICLE-VESICLE ADHESION
【24h】

MORPHOLOGIES IN VESICLE-VESICLE ADHESION

机译:膀胱粘连的形态学

获取原文
获取原文并翻译 | 示例

摘要

A single cell system, such as red blood cell, shows a series of shape transitions, stomatocyte-discocyte-echinocyte, by applying a variety of chemical and physical stresses. This series of shapes is well described by minimization of elastic energy, i.e., area difference elasticity (ADE) model [1,2]. By adhering vesicles, the aggregates show rich morphologies due to the competition between the elastic energy and the adhesion energy, which gives physical basis of morphogenesis in cell division [3]. When two deformable spherical vesicles are adhered each other, the doublet has a flat contact area with two spherical caps (sphere doublet), where the total energy of the adhering vesicles is governed by the vesicle stretching energy and the adhesion energy. On the other hand, for the adhesion of non-spherical vesicles, the membrane bending energy starts to compete the adhesion energy. In this region, the total energy of the doublet, W, is expressed by a sum of the vesicles' bending energy, W_(b,1) and W_(b,2), and the adhesion energy assumed to be proportional to the contact area A_c, W = W_(b,1) + W_(b,2) - ΓA_C , where Γ (>0) is the adhesion strength and the bending energy is expressed by Helfrich model [4]. This theoretical model predicts that in the weak adhesion, the adhering vesicles prefer the minimum contact area morphology (flat adhesion), whereas in the strong adhesion, the doublet shows the maximum contact area morphology with curved interface [5]. This theoretical argument predicts fruitful morphology transitions of the doublets, although no systematic experiments have been reported so far. In this study we show the morphology transitions of adhering giant unilamellar vesicles (GUVs) induced by the changing the reduced volume of vesicles. The GUV is homogeneous single component vesicle composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). First we adhered two spherical GUVs with the aid of the depletion interaction. Thereafter we decreased the reduced volume of the adhering vesicles by using thermal expansion of membranes. Depending on the reduced volume, the doublet deformed its shape and showed a unique morphology transitions, sphere-oblate-prolate doublet and sphere-sigmoidal doublet. We describe the observed morphology transitions based on the competition between the bending and the adhesion energies and explain the origin of the adhesion energy from the inter-membrane interaction point of view.
机译:通过施加多种化学和物理应力,单细胞系统(例如红细胞)显示出一系列形状转变,即口腔细胞-碟状细胞-棘突细胞。通过最小化弹性能,即面积差弹性(ADE)模型[1,2],可以很好地描述这一系列形状。通过粘附囊泡,由于弹性能和粘附能之间的竞争,聚集体显示出丰富的形态,这为细胞分裂的形态发生提供了物理基础[3]。当两个可变形的球形囊泡相互粘附时,双峰具有与两个球形帽(双峰球)的平坦接触区域,其中粘附的囊泡的总能量由囊泡拉伸能和粘附能控制。另一方面,对于非球形囊泡的粘附,膜弯曲能开始与粘附能竞争。在该区域中,双峰的总能量W由小泡弯曲能量W_(b,1)和W_(b,2)的总和表示,并且粘附能被假定为与接触成比例面积A_c,W = W_(b,1)+ W_(b,2)-ΓA_C,其中Γ(> 0)是粘附强度,弯曲能由Helfrich模型表示[4]。该理论模型预测,在较弱的粘附力下,粘附的囊泡更倾向于最小的接触面积形态(平坦的粘附力),而在较强的粘附力下,双胶合剂具有弯曲界面的最大接触面积形态[5]。尽管到目前为止还没有系统的实验报道,但这种理论观点预言了双峰的形态学转变是富有成果的。在这项研究中,我们显示了变化的囊泡体积减少引起的粘附的巨大单层囊泡(GUV)的形态转变。 GUV是由1,2-二肉豆蔻酰基-sn-甘油-3-磷酸胆碱(DMPC)组成的均质单组分囊泡。首先,我们借助耗尽相互作用粘附了两个球形GUV。此后,我们通过使用膜的热膨胀来减少粘附的囊泡减少的体积。取决于减少的体积,双峰变形了其形状,并显示出独特的形态学转变,扁球形的扁球形和扁形的球形。我们描述了基于弯曲和粘附能之间竞争的观察到的形态转变,并从膜间相互作用的角度解释了粘附能的起源。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号