首页> 外文会议>ASME Turbo Expo vol.3 pt.A; 20050606-09; Reno-Tahoe,NV(US) >PREDICTION OF HEAT TRANSFER IN A RIBBED CHANNEL: EVALUATION OF UNSTEADY RANS METHODOLOGY
【24h】

PREDICTION OF HEAT TRANSFER IN A RIBBED CHANNEL: EVALUATION OF UNSTEADY RANS METHODOLOGY

机译:肋状通道中的传热预测:非稳态传热方法的评估

获取原文
获取原文并翻译 | 示例

摘要

Heat transfer in a straight channel with rib turbulators on one wall is predicted numerically with an unsteady Reynolds-averaged Navier-Stokes (URANS) methodology and compared to code-validation quality experimental data from the literature. Additionally, for comparison, steady simulations of the problem are conducted using two popular turbulence closure models, a Realizable k-ε model and a differential Reynolds-stress model. Closure in the URANS simulation is provided by a new eddy-viscosity-based model that was developed in the Advanced Computational Research Laboratory at Clemson University. This new model consists of three transport equations, and it is designed specifically to promote natural unsteadiness in the flow without the need for artificial forcing. In all cases, the Reynolds number, based on hydraulic diameter, is equal to 24,000. Eight square ribs, orthogonal to the flow direction, are equally spaced on the bottom wall of the channel. For the URANS simulation, after the flow becomes fully-developed in the streamwise direction, the predicted Nusselt number on the ribbed wall follows the trend of measured data from the modeled experimental study. However, the unsteady simulation slightly overpredicts the distance to the peak heat transfer aft of each rib. Also, the heat transfer prediction is very dependent on the grid resolution aft of the ribs. Therefore, efficient refinement of the unstructured mesh and grid-independence issues are discussed. Results of both steady simulations show a significant underprediction of Nusselt number over the entire ribbed wall, with the Reynolds-stress model giving the better result of the two steady closure models. The results of this study clearly show that unsteady vortex shedding off of the ribs is important in the physics of this problem, and a systematic, unsteady methodology is necessary to accurately predict ribbed-channel heat transfer.
机译:用不稳定的雷诺平均Navier-Stokes(URANS)方法对在壁上具有肋湍流器的直通道中的传热进行数值预测,并将其与文献中的代码验证质量实验数据进行比较。另外,为了进行比较,使用两个流行的湍流闭合模型,可实现的k-ε模型和微分雷诺应力模型对问题进行了稳定的仿真。 URANS模拟中的闭包由克莱姆森大学高级计算研究实验室开发的基于涡流-粘度的新模型提供。这个新模型由三个输运方程组成,并且经过专门设计,可在不需要人工强迫的情况下促进流动中的自然不稳定。在所有情况下,基于水力直径的雷诺数等于24,000。垂直于流向的八个方肋在通道的底壁上等距分布。对于URANS模拟,在流向沿流方向完全发展之后,带肋壁上的预测Nusselt数遵循模拟实验研究中测量数据的趋势。但是,不稳定的模拟会稍微高估到每个肋骨后部峰值传热的距离。而且,传热预测非常依赖于肋条后方的网格分辨率。因此,讨论了非结构化网格的有效细化和网格独立性问题。两种稳态模拟的结果表明,整个肋肋壁上的Nusselt数均显着低估,雷诺应力模型给出了两种稳态闭合模型的较好结果。这项研究的结果清楚地表明,不稳定的涡流从肋骨上脱落对于解决该问题非常重要,因此需要一种系统的,不稳定的方法来准确预测肋骨通道的传热。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号