首页> 外文会议>ASME international design engineering technical conferences and computers and information in engineering conference 2010 >OPTIMAL PLUG-IN HYBRID VEHICLE DESIGN AND ALLOCATION FOR MINIMUM LIFE CYCLE COST, PETROLEUM CONSUMPTION AND GREENHOUSE GASEMISSIONS
【24h】

OPTIMAL PLUG-IN HYBRID VEHICLE DESIGN AND ALLOCATION FOR MINIMUM LIFE CYCLE COST, PETROLEUM CONSUMPTION AND GREENHOUSE GASEMISSIONS

机译:最小生命周期成本,石油消耗和温室气体排放的最优插入式混合动力汽车设计和分配

获取原文
获取原文并翻译 | 示例

摘要

Plug-in hybrid electric vehicle (PHEV) technology has the potential to help address economic, environmental, and national security concerns in the United States by reducing operating cost, greenhouse gas (GHG) emissions and petroleum consumption from the transportation sector. However, the net effects of PHEVs depend critically on vehicle design, battery technology, and charging frequency. To examine these implications, we develop an integrated optimization model utilizing vehicle physics simulation, battery degradation data, and U.S. driving data to determine optimal vehicle design and allocation of vehicles to drivers for minimum life cycle cost, GHG emissions, and petroleum consumption. We find that, while PHEVs with large battery capacity minimize petroleum consumption, a mix of PHEVs sized for 25-40 miles of electric travel produces the greatest reduction in lifecycle GHG emissions. At today's average US energy prices, battery pack cost must fall below $460/kWh (below $300/kWh for a 10% discount rate) for PHEVs to be cost competitive with ordinary hybrid electric vehicles (HEVs). Carbon allowance prices have marginal impact on optimal design or allocation of PHEVs even at $100/tonne. We find that the maximum battery swing should be utilized to achieve minimum life cycle cost, GHGs, and petroleum consumption. Increased swing enables greater all-electric range (AER) to be achieved with smaller battery packs, improving cost competitiveness of PHEVs. Hence, existing policies that subsidize battery cost for PHEVs would likely be better tied to AER, rather than total battery capacity.
机译:插电式混合动力汽车(PHEV)技术有潜力通过降低运营成本,减少温室气体(GHG)排放和交通运输部门的石油消耗来帮助解决美国的经济,环境和国家安全问题。然而,插电式混合动力汽车的净效应主要取决于车辆设计,电池技术和充电频率。为了检查这些影响,我们利用车辆物理模拟,电池退化数据和美国驾驶数据开发了一个综合优化模型,以确定最佳的车辆设计和车辆分配给驾驶员的最小生命周期成本,GHG排放量和石油消耗量。我们发现,虽然具有大电池容量的插电式混合动力汽车可最大程度地减少石油消耗,但混合动力电动汽车的大小却适合25-40英里的电动行驶,可以最大程度地减少生命周期内的温室气体排放量。以今天的美国平均能源价格计算,PHEV的电池组成本必须低于460美元/千瓦时(低于300美元/千瓦时,折扣率为10%),才能在成本上与普通混合动力汽车(HEV)竞争。碳配额价格对插电式混合动力汽车的最佳设计或配置影响甚微,即使价格为每吨100美元。我们发现,应该利用最大的电池摆幅来实现最小的生命周期成本,GHG和石油消耗。增大的摆幅可以使用较小的电池组实现更大的全电动范围(AER),从而提高PHEV的成本竞争力。因此,补贴PHEV电池成本的现有政策可能会更好地与AER挂钩,而不是总电池容量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号