【24h】

NON-PERIODIC 3D DIFFUSERS FOR MITIGATING AERODYNAMIC EXCITERS

机译:用于减振气动激励器的非周期3D扩散器

获取原文
获取原文并翻译 | 示例

摘要

The great majority of the modern centrifugal stages utilize periodic stationary structures such as inlet guide vanes and/or diffuser vanes. To maximize the aerodynamic performance of the centrifugal stage, these vanes must be positioned at a close proximity of the centrifugal impeller. This arrangement results in a dramatic interaction between rotating impeller and stationary vanes due to reflection of the pressure waves from the periodic vanes back onto the impeller blades. The periodic nature of the reflected pressure waves may lead to an excitation of the impeller blade eigenmodes if the fundamental frequency (or, its multiple) of the external force matches with the natural frequency of the subject impeller. As the impeller blades provide very little to no damping, there is a strong possibility of the high cycle fatigue resonance failure of the impeller blades if the impeller design does not provide with a sufficient separation from the resonance modes. We should note that ensuring such a separation is not straightforward task for many stages with periodic exciters, and may not be even feasible for some practical design cases. This presentation focuses on a novel way to mitigate possible resonance issues for centrifugal impellers due to pressure reflection waves emanating from the diffuser blades. We propose to utilize non-periodic centrifugal diffuser together with the sculpting leading edges for the three-dimensional diffuser vanes. In order to demonstrate the attractiveness and feasibility of this approach, we have utilized Computational Fluid Dynamics (CFD) tools to perform time-accurate unsteady turbulent flow analyses in centrifugal stages and capture cyclic pressure waves acting on the impeller blades. The present work considers a regular periodic low-solidity diffuser with two-dimensional vanes, a three-dimensional periodic diffuser with a sculpted leading edge, and, finally, a non-periodic three-dimensional diffuser with an unequal, non-repeating stagger. We have utilized eighteen CFD pressure probes located on the impeller blade pressure and suction sides to monitor temporal variations of the static pressure that capture the pressure reflection waves from the diffuser vanes. The Fourier series decomposition facilitates detailed analyses of the pressure energy distribution over a wide range of frequencies. The results of the numerical studies demonstrate that even the use of the periodic diffuser with 3D sculpted leading edges help reduce the magnitude of the pressure oscillations at the dominant frequency and its integer multiples. However, the pressure energy distribution changes dramatically when using the non-periodic diffuser arrangement together with the sculpted leading edge vanes. The strength of the pressure waves associated with the dominant harmonics and its integer multiples are reduced about 30% to 85% and spread over the frequencies that constitute integer multiples of the fundamental impeller frequency. This pressure energy redistribution of the 3D non-periodic diffuser is a significant aid to the aerodynamicist. By significantly reducing the mechanical constraint compromises, the designer is allowed to focus more on aerodynamic component efficiency.
机译:绝大多数现代离心级利用周期性的固定结构,例如入口导向叶片和/或扩散叶片。为了最大化离心级的空气动力学性能,这些叶片必须放置在离心叶轮的附近。由于来自周期性叶片的压力波反射回到叶轮叶片上,所以这种布置导致旋转的叶轮和固定叶片之间的剧烈相互作用。如果外力的基本频率(或其倍数)与目标叶轮的固有频率匹配,则反射压力波的周期性会导致叶轮叶片本征模的激发。由于叶轮叶片几乎不提供阻尼或不提供阻尼,因此如果叶轮设计无法与共振模式充分分开,则极有可能发生叶轮叶片的高周疲劳共振失败。我们应该注意,对于具有周期性激励器的许多阶段,确保这种分离并不是一件容易的事,对于某些实际设计案例而言,甚至可能也不可行。本演讲重点介绍了一种新颖的方法,可减轻由于扩散叶片产生的压力反射波而导致的离心式叶轮可能出现的共振问题。我们建议将非周期性离心扩散器与雕刻前缘一起用于三维扩散器叶片。为了证明这种方法的吸引力和可行性,我们利用计算流体动力学(CFD)工具在离心阶段执行了时间精确的非稳态湍流分析,并捕获了作用在叶轮叶片上的循环压力波。本工作考虑具有二维叶片的规则周期性低密度扩散器,具有雕刻前缘的三维周期性扩散器,以及最后具有不相等,不重复交错的非周期性三维扩散器。我们已经利用位于叶轮叶片压力和吸力侧的18个CFD压力探头来监视静态压力的时间变化,该变化会捕获来自扩散器叶片的压力反射波。傅里叶级数分解有助于详细分析宽频率范围内的压力能量分布。数值研究的结果表明,即使使用带有3D雕刻前缘的周期性扩散器,也有助于减小主导频率及其整数倍数下的压力振荡幅度。但是,当将非周期性扩压器装置与雕刻的前导叶片一起使用时,压力能量分布会急剧变化。与主要谐波及其整数倍相关的压力波的强度降低了大约30%至85%,并散布在构成基本叶轮频率整数倍的频率上。 3D非周期性扩散器的这种压力能量重新分布对空气动力学家而言是一个重要的帮助。通过显着减少机械约束方面的折衷,允许设计人员将更多的精力放在空气动力学部件的效率上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号