首页> 外文会议>ASME(American Society of Mechanical Engineers) Turbo Expo vol.1; 20060506-11; Barcelona(ES) >DEVELOPMENT OF A DETAILED JP-8/JET-A CHEMICAL KINETIC MECHANISM FOR HIGH PRESSURE CONIDITIONS IN GAS TURBINE COMBUSTORS
【24h】

DEVELOPMENT OF A DETAILED JP-8/JET-A CHEMICAL KINETIC MECHANISM FOR HIGH PRESSURE CONIDITIONS IN GAS TURBINE COMBUSTORS

机译:燃气轮机燃烧器高压条件详细的JP-8 / JET-A化学动力学机理的开发

获取原文
获取原文并翻译 | 示例

摘要

Pressure conditions under which chemical reactions proceed in gas turbine combustors impact the behavior of the combustion process by either increasing or decreasing the reaction rates depending on whether these reactions are unimolecular/recombination or chemically activated bimolecular reactions. Some reactions are pressure independent such as H-abstraction reactions, while others are conditionally pressure independent if they are not at their either low or high limits. The recombination and decomposition of kinetic reactions rate constants change relative to their limiting values as the pressure and/or temperature conditions vary and as a result the reactants concentrations and reactions pathways are also influenced. In this study, pressure-dependent kinetic rate parameters for 39 elementary reactions have been added to our detailed JP-8/Jet-A kinetic reaction mechanism, we have developed, to model ignition of JP-8 and Jet-A fuels behind a reflected shock wave. The main objective is to develop a detailed chemical kinetic reaction mechanism for low and high pressure combustion conditions, using a 6-component surrogate fuel blend considered to represent the actual (petroleum-derived) JP-8 and Jet-A fuels. The pressure-dependent kinetic rate parameters for 39 reactions have been incorporated into our low pressure detailed JP-8 chemical kinetic reaction mechanism to generate the fall-off curves for the Arrehnius rate parameters required for low and high pressure ignition analysis. The new JP-8 detailed mechanism has been evaluated, using a stoichiometric JP-8/O2/N2 and Jet-A/air mixtures, over a temperature range of 968-1639 K and a pressure range of 10 to 34 atmosphere by predicting auto-ignition delay times and comparing them to the shock tube ignition data of Minsk, Sarikovskii, and Hanson. The results indicated that the developed JP-8/Jet-A reaction mechanism is capable of reproducing the qualitative ignition trends of the measured ignition data behind a reflected shock wave. However, the detailed kinetic reaction mechanism overestimated the measured ignition delay times. The results also suggested that additional more reactions are high pressure-dependent under the conditions considered in this study and as such a need still exists for experimentally measured kinetic rate coefficients for high pressure ignition and combustion conditions. This study, therefore, warrants further experiments and detailed kinetic analysis.
机译:燃气轮机燃烧室中发生化学反应的压力条件会根据这些反应是单分子/复合反应还是化学活化的双分子反应,通过提高或降低反应速率来影响燃烧过程的行为。一些反应与压力无关,例如H-抽象反应,而其他一些反应则不在其上限或下限,而有条件地与压力无关。随着压力和/或温度条件的变化,动力学反应速率常数的重组和分解相对于其极限值发生变化,结果反应物的浓度和反应途径也受到影响。在这项研究中,我们开发了详细的JP-8 / Jet-A动力学反应机理,添加了39个基本反应的压力相关动力学速率参数,以对JP-8和Jet-A燃料的点火进行建模。激波。主要目标是使用被认为代表实际(石油衍生)JP-8和Jet-A燃料的6组分替代燃料共混物,开发适用于低压和高压燃烧条件的详细化学动力学反应机理。用于我们的低压详细JP-8化学动力学反应机理中已包含39个反应的压力相关动力学速率参数,以生成低压和高压点火分析所需的Arrehnius速率参数的衰减曲线。通过使用化学计量的JP-8 / O2 / N2和Jet-A /空气混合物,在968-1639 K的温度范围和10至34个大气压的压力范围内,通过预测自动点火延迟时间,并将其与明斯克,萨里科夫斯基和汉森的减震管点火数据进行比较。结果表明,开发的JP-8 / Jet-A反应机理能够在反射的冲击波之后重现所测量点火数据的定性点火趋势。但是,详细的动力学反应机理高估了测得的点火延迟时间。结果还表明,在本研究中考虑的条件下,更多的反应是高压依赖性的,因此仍然需要在高压点火和燃烧条件下通过实验测得的动力学速率系数。因此,这项研究需要进一步的实验和详细的动力学分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号