首页> 外文会议>ASME(American Society of Mechanical Engineers) Turbo Expo vol.1; 20060506-11; Barcelona(ES) >GASIFIED BIOMASS FUELLED GAS TURBINE: COMBUSTION STABILITY AND SELECTIVE CATALYTIC OXIDATION OF FUEL-BOUND NITROGEN
【24h】

GASIFIED BIOMASS FUELLED GAS TURBINE: COMBUSTION STABILITY AND SELECTIVE CATALYTIC OXIDATION OF FUEL-BOUND NITROGEN

机译:凝固的生物质燃气轮机:燃料结合氮的燃烧稳定性和选择性催化氧化

获取原文
获取原文并翻译 | 示例

摘要

Low heating value of gasified biomass and its fuel bound nitrogen containing compounds challenge the efforts on utilizing gasified biomass on gas turbine combustor. Low heating value of the gas brings along combustion stability issues and pollutant emission concerns. The fuel bound nitrogen present in gasified biomass could completely be converted to NOx during the combustion process. Catalytic combustion technology, showing promising developments on ultra low emission gas turbine combustion of natural gas could also be the key to successful utilization of biomass in gas turbine combustor. Catalysts could stabilize the combustion process of low heating value gas while the proper design of the catalytic configuration could selectively convert the fuel bound nitrogen into molecular nitrogen. This paper presents preliminary results of the experimental investigations on combustion stability and nitrogen selectivity in selective catalytic oxidation of ammonia in catalytic combustion followed by a brief description of the design of catalytic combustion test facility. The fuel-NOx reduction strategy considered in this study was to preprocess fuel in the catalytic system to remove fuel bound nitrogen before real combustion reactions occurs. The catalytic combustion system studied here contained two stage reactor in one unit containing fuel preprocessor (SCO catalyst) and combustion catalysts. Experiments were performed under lean combustion conditions (λ value from 6 up to 22) using a simulated mixture of gasified biomass. The Selective Catalytic Oxidation approach was considered to reduce the conversion of NH_3 into N_2. Results showed very good combustion stability, higher combustion efficiency and good ignition performances under the experimental conditions. However, the selective oxidation of fuel bound nitrogen into N_2 was only in the range of 20% to 30% under the above conditions.
机译:气化生物质及其燃料结合的含氮化合物的低热值挑战了在燃气轮机燃烧器上利用气化生物质的努力。气体的低热值带来了燃烧稳定性问题和污染物排放问题。气化生物质中存在的与燃料结合的氮可以在燃烧过程中完全转化为NOx。催化燃烧技术显示了超低排放燃气轮机天然气燃烧的发展前景,这也可能是成功利用燃气轮机燃烧室中生物质的关键。催化剂可以稳定低热值气体的燃烧过程,而适当的催化构型设计可以选择性地将燃料结合的氮转化为分子氮。本文介绍了在催化燃烧中氨的选择性催化氧化中燃烧稳定性和氮选择性的实验研究的初步结果,然后简要介绍了催化燃烧测试设备的设计。这项研究中考虑的减少燃料NOx的策略是在实际燃烧反应发生之前对催化系统中的燃料进行预处理,以除去燃料中的氮。此处研究的催化燃烧系统在一个单元中包含两级反应器,该单元包含燃料预处理器(SCO催化剂)和燃烧催化剂。实验是在稀薄燃烧条件(λ值从6到22)下使用模拟的气化生物质混合物进行的。考虑到选择性催化氧化方法可减少NH_3向N_2的转化。结果显示在实验条件下非常好的燃烧稳定性,更高的燃烧效率和良好的点火性能。然而,在上述条件下,燃料结合的氮选择性氧化成N_2仅在20%至30%的范围内。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号