【24h】

APPLICATION OF HIGHER-ORDER COMPACT FINITE DIFFERENCE SCHEMES TO OUT OF PLANE VORTICITY MEASUREMENTS

机译:高阶紧凑有限差分格式在平面涡度测量中的应用

获取原文
获取原文并翻译 | 示例

摘要

The accuracy of out-of-plane vorticity from in-plane experimental velocity measurements is investigated with particular application to Digital Particle Image Velocimetry (DPIV). Higher-order compact finite difference schemes are proposed as alternatives for the vorticity estimation. Simulations of known flow fields are used to quantify errors associated with the different methods of estimation. The effects of spatial sampling resolution with respect to the range of flow scales on the bias errors of the method accuracies are explored. In addition, estimation of the velocity measurement random error propagation into the vorticity measurement is presented. The higher-order compact schemes deliver improved accuracy compared with previously used methods, even when that domain is spatially undersampled or in the presence of strong velocity gradients. The compact schemes demonstrated less than 0.3% bias error throughout the core of the vortex, resolving flow structures as small as the Nyquist sampling frequency of the system, while the error in the conventional methods increased as the spatial sampling and the range of wave numbers present in the flow field was reduced. The bias error is an irrecoverable loss due to the truncation error of the method, and thus poses significant limitations to the system, whereas the random error propagation can be reduced for the higher-order schemes by applying a simple Gaussian smoothing to the flow field. Thus, the reduction in bias error is of greater importance to the accuracy of the system, particularly as modern global flow measurement technologies achieve higher spatial and temporal resolutions, as well as higher accuracies in velocity measurements. Overall, the compact schemes provide an improved approach for vorticity evaluation compared to conventional algorithms.
机译:研究了平面内实验速度测量中面外涡旋的精度,并将其特别应用于数字粒子图像测速(DPIV)。提出了高阶紧凑有限差分方案作为涡度估计的替代方案。已知流场的模拟用于量化与不同估算方法相关的误差。探讨了相对于流量范围的空间采样分辨率对方法精度偏差的影响。另外,提出了对速度测量随机误差传播到涡度测量中的估计。与以前使用的方法相比,即使在该域在空间上采样不足或存在强速度梯度的情况下,高阶紧凑型方案也可以提供更高的精度。紧凑的方案在整个涡流核心显示出小于0.3%的偏差,解决了与系统的奈奎斯特采样频率一样小的流动结构,而传统方法中的误差随着空间采样和波数范围的增加而增加在流场中减少了。由于该方法的截断误差,偏置误差是不可恢复的损失,因此对系统造成了重大限制,而对于高阶方案,可以通过对流场应用简单的高斯平滑来减少随机误差的传播。因此,减少偏差误差对于系统的精度尤为重要,特别是当现代全局流量测量技术实现更高的空间和时间分辨率以及更高的速度测量精度时。总体而言,与传统算法相比,紧凑型方案提供了一种改进的涡度评估方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号