【24h】

APPLICATION OF SISO AND MIMO MODAL ANALYSIS TECHNIQUES ON A MEMBRANE MIRROR SATELLITE

机译:SISO和MIMO模态分析技术在膜反射卫星上的应用。

获取原文
获取原文并翻译 | 示例

摘要

The future of space satellite technology lies in the development of ultra-large, ultra-lightweight space structures orders of magnitude greater in size than current satellite technology. Such large craft will increase current communication and imaging capabilities from orbit. To get ultra-large structures in space, they will have to be stored within the Space Shuttle cargo bay and then inflated on-orbit. However, the highly flexible and pressurized nature of these ultra-large spacecraft poses several daunting vibration and control problems. Disturbances (i.e. on-orbit maneuvering, guidance and attitude control, and the harsh environment of space) wreck havoc with the on-orbit stability, pointing accuracy, and surface resolution capability of the inflated satellite. However, recent advances in integrated smart material systems promise to provide solutions to these problems. Recent research into the use of Macro-Fiber Composite (MFC~(~R)) devices integrated into the dynamic measurement and vibration control of inflated structures has had promising results. These piezoelectric-based devices possess a superior electromechanical coupling coefficient making them superb sensors and actuators in dynamic analysis applications. Initially, research was performed on an inflated torus using single-input, single-output (SISO) testing techniques. Since then, steps have been taken to outline a new, multiple-input, multiple-output (MIMO) testing technique for these ultra-large structures. Based on the matrix formulation and postprocessing techniques recently developed, the current work applies these results to an inflated torus with bonded membrane mirror to extract modal parameters, such as the damped natural frequencies, associated damping, and mode shapes within the frequency bandwidth of interest for these structures (5 - 200 Hz). MIMO modal testing techniques are ideal for large, inflated structure applications. The nature of the structure requires the use of multiple sensors and actuators for worthwhile dynamic analysis and control. Therefore, in the future, the results of this work will form the premise for an autonomous, self-contained system that can both identify the vibratory characteristics of an ultra-large, inflated space craft and apply an appropriate control algorithm to suppress any unwanted vibration-all while on-orbit.
机译:太空卫星技术的未来在于发展超大型,超轻型太空结构,其尺寸要比目前的卫星技术大几个数量级。如此庞大的飞行器将增加轨道的当前通信和成像能力。为了使超大型结构进入太空,必须将它们存储在航天飞机的货舱内,然后在轨道上膨胀。但是,这些超大型航天器的高度柔性和加压特性带来了一些令人生畏的振动和控制问题。扰动(即在轨操纵,制导和姿态控制以及恶劣的太空环境)破坏了充气卫星的在轨稳定性,指向精度和表面分辨能力。但是,集成智能材料系统的最新进展有望为这些问题提供解决方案。最近对将宏纤维复合材料(MFC〜(〜R))装置用于充气结构的动态测量和振动控制的研究取得了可喜的成果。这些基于压电的设备具有出色的机电耦合系数,使其在动态分析应用中成为一流的传感器和执行器。最初,使用单输入单输出(SISO)测试技术对充气圆环进行了研究。从那时起,已经采取步骤概述了针对这些超大型结构的新的多输入多输出(MIMO)测试技术。基于最近开发的矩阵公式和后处理技术,当前工作将这些结果应用于带有粘结膜镜的充气圆环,以提取模态参数,例如感兴趣的频率带宽内的阻尼固有频率,相关阻尼和模式形状。这些结构(5-20​​0 Hz)。 MIMO模态测试技术非常适合大型充气结构应用。结构的性质要求使用多个传感器和执行器,以进行有价值的动态分析和控制。因此,在将来,这项工作的结果将成为一个自治的,独立的系统的前提,该系统既可以识别超大型充气航天器的振动特性,又可以应用适当的控制算法来抑制任何不必要的振动-全部在轨。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号