首页> 外文会议>Annual Loss Prevention Symposium; 20060424-27; Orlando,FL(US) >MICROFLUIDING ACTIVITIES IN ARTIFICIAL AND BIO-MEMBRANE
【24h】

MICROFLUIDING ACTIVITIES IN ARTIFICIAL AND BIO-MEMBRANE

机译:人造膜和生物膜中的微流活动

获取原文
获取原文并翻译 | 示例

摘要

Along with development of nano-particles and bio-nano-technology and the support ofrngenetic engineering, it is today we have developed additional concept for continuations ofrndrug release, monitoring of different units, starting from chemical to biological systemrnincluding the organ specific disease control with the help of nono-divices. To realize thernprocess the relevant question was, how do you introduce the process in continuous mode.rnTo describe the process and the concept of microfluiding activities in artificial and biomembrane,rnthe concept of fluid; mass and heat transfer through capillary system must bernstudied, where the Reynolds should be less than < 30. In general micro fluid transportrnobeys the low Reynolds number Re = L.V. p/ μ, where L denotes the length of tube, Vrnthe velocity, u0001 as density and μ as viscosity of fluid. Investigations of low-Reynoldsrnnumber hydrodynamics naturally fall into the fluid dynamics realm of long interest to thernchemical engineering and nano-biotechnology community. Gad-el-Hak, M (1999); Kimrnand Karrila, (1991) [1,2]. The fluid transport in microtubules is conceptualized by meansrnof dragging, that the molecules maintain two fundamental criteria namely surfacerntensions of fluids and thermo dynamical equilibrium. However surface force play a morernimportant role than the standard continuum of transport processes. So the molecularrnorganizations of polymers and their charges on the surface of the molecules will take thernmajor role to handle the movements and driving force of small fluid volumes throughrnmico-nano-capillaries at small length scales. To compare the properties of micro fluidingrnactivities changing from the range of macro-to micro- and nano-scale the followingrnconditions are to be taken care;
机译:随着纳米粒子和生物纳米技术的发展以及遗传工程的支持,今天,我们已经开发出了新的概念,用于持续释放药物,监测从化学到生物系统的不同单位,包括器官特异性疾病的控制。非营利组织的帮助。要实现该过程的相关问题是,如何以连续模式介绍该过程。rn描述过程和人工和生物膜中微流化活动的概念,流体的概念;必须研究通过毛细管系统的传质和传热,其中雷诺数应小于30。通常,微流体传输的雷诺数低,Re =L.V。 p /μ,其中L表示管的长度,V表示速度,u0001表示密度,μ表示流体粘度。低雷诺数流体动力学的研究自然属于热化学工程和纳米生物技术界长期以来关注的流体动力学领域。 Gad-el-Hak,M(1999); Kimrnand Karrila,(1991年)[1,2]。微管中的流体传输是通过拖拉的方式来概念化的,即分子保持两个基本标准,即流体的表面张力和热力学平衡。然而,表面力比运输过程的标准连续性更重要。因此,聚合物的分子组织及其在分子表面的电荷将起主要作用,以处理小体积尺度上通过纳米纳米毛细管的小体积流体的运动和驱动力。为了比较微观流动性从宏观到微米和纳米范围变化的特性,应注意以下条件:

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号